Stable Interface Conditions for Discontinuous Galerkin Approximations of Navier-Stokes Equations

被引:0
|
作者
Arunasalam Rahunanthan
Dan Stanescu
机构
[1] Univ. of Wyoming,Department of Mathematics
[2] Univ. of Wyoming,Department of Mathematics and Institute for Scientific Computing
来源
关键词
Discontinous Galerkin; Navier-Stokes; Stable interface conditions;
D O I
暂无
中图分类号
学科分类号
摘要
A study of boundary and interface conditions for Discontinuous Galerkin approximations of fluid flow equations is undertaken in this paper. While the interface flux for the inviscid case is usually computed by approximate Riemann solvers, most discretizations of the Navier-Stokes equations use an average of the viscous fluxes from neighboring elements. The paper presents a methodology for constructing a set of stable boundary/interface conditions that can be thought of as “viscous” Riemann solvers and are compatible with the inviscid limit.
引用
收藏
页码:118 / 138
页数:20
相关论文
共 50 条
  • [1] Stable Interface Conditions for Discontinuous Galerkin Approximations of Navier-Stokes Equations
    Rahunanthan, Arunasalam
    Stanescu, Dan
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (01) : 118 - 138
  • [2] DISCONTINUOUS GALERKIN APPROXIMATIONS OF THE STOKES AND NAVIER-STOKES EQUATIONS
    Chrysafinos, Konstantinos
    Walkington, Noel J.
    MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 2135 - 2167
  • [3] Discontinuous Galerkin methods for the Navier-Stokes equations using solenoidal approximations
    Montlaur, A.
    Fernandez-Mendez, S.
    Peraire, J.
    Huerta, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 64 (05) : 549 - 564
  • [4] A discontinuous Galerkin method for the Navier-Stokes equations
    Lomtev, I
    Karniadakis, GE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 29 (05) : 587 - 603
  • [5] AN ENTROPY STABLE, HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Williams, D. M.
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 95 - 121
  • [6] Exact controllability of the Galerkin approximations of Navier-Stokes equations
    Lions, JL
    Zuazua, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 1015 - 1021
  • [7] Central Discontinuous Galerkin Method for the Navier-Stokes Equations
    Tan Ren
    Chao Wang
    Haining Dong
    Danjie Zhou
    Journal of Beijing Institute of Technology, 2017, 26 (02) : 158 - 164
  • [8] Discontinuous Galerkin schemes for the compressible Navier-Stokes equations
    Drozo, C
    Borrel, M
    Lerat, A
    SIXTEENTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN FLUID DYNAMICS, 1998, 515 : 266 - 271
  • [9] Central Discontinuous Galerkin Method for the Navier-Stokes Equations
    Ren, Tan (rentanx@126.com), 2017, Beijing Institute of Technology (26):
  • [10] A discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Karakashian, O
    Katsaounis, T
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 157 - 166