Corner exponents in the two-dimensional Potts model

被引:0
|
作者
Dragi Karevski
Peter Lajkó
Loïc Turban
机构
[1] Université Henri Poincaré (Nancy I),Laboratoire de Physique du Solide (URA CNRS No 155)
[2] University of Szeged,Department of Theoretical Physics
来源
关键词
Potts model; corner exponents; anisotropy; length rescaling;
D O I
暂无
中图分类号
学科分类号
摘要
The critical behavior at a corner in two-dimensional Ising and three-state Potts models is studied numerically on the square lattice using transfer operator techniques. The local critical exponents for the magnetization and the energy density for various opening angles are deduced from finite-size scaling results at the critical point for isotropic or anisotropic couplings. The scaling dimensions compare quite well with the values expected from conformal invariance, provided the opening angle is replaced by an effective one in anisotropic systems.
引用
收藏
页码:1153 / 1162
页数:9
相关论文
共 50 条
  • [1] Corner Exponents in the Two-Dimensional Potts Model
    Karevski, D.
    Lajko, P.
    Turban, L.
    [J]. Journal of Statistical Physics, 86 (5-6):
  • [2] Corner exponents in the two-dimensional Potts model
    Karevski, D
    Lajko, P
    Turban, L
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (5-6) : 1153 - 1162
  • [3] SPINOR EXPONENTS FOR THE TWO-DIMENSIONAL POTTS-MODEL
    NIENHUIS, B
    KNOPS, HJF
    [J]. PHYSICAL REVIEW B, 1985, 32 (03) : 1872 - 1875
  • [4] Critical exponents of domain walls in the two-dimensional Potts model
    Dubail, Jerome
    Jacobsen, Jesper Lykke
    Saleur, Hubert
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (48)
  • [5] MAGNETIC EXPONENTS OF THE TWO-DIMENSIONAL Q-STATE POTTS-MODEL
    NIENHUIS, B
    RIEDEL, EK
    SCHICK, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (06): : L189 - L192
  • [6] CRITICAL EXPONENTS OF TWO-DIMENSIONAL POTTS AND BOND PERCOLATION MODELS
    BLOTE, HWJ
    NIGHTINGALE, MP
    DERRIDA, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (02): : L45 - L49
  • [7] Backbone and shortest-path exponents of the two-dimensional Q-state Potts model
    Fang, Sheng
    Ke, Da
    Zhong, Wei
    Deng, Youjin
    [J]. PHYSICAL REVIEW E, 2022, 105 (04)
  • [8] Dynamics of clusters in the two-dimensional Potts model
    Gunduc, Y
    Aydin, M
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 232 (1-2) : 265 - 272
  • [9] Two-Dimensional Potts Model and Annular Partitions
    C. King
    [J]. Journal of Statistical Physics, 1999, 96 : 1071 - 1089
  • [10] Two-dimensional Potts model and annular partitions
    King, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1999, 96 (5-6) : 1071 - 1089