Evolution in a Gaussian Random Field

被引:0
|
作者
V. I. Alkhimov
机构
[1] Moscow State Regional University,
来源
关键词
random field; correlation function; Green's function; Feynman–Kac formula; renormalization group;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an evolution process in a Gaussian random field V(q) with the mean ‹V(q)› = 0 and the correlation function W(|q − q′|) ≡ ‹V(q)V(q′)›, where q ∈ ℝd and d is the dimension of the Euclidean space ℝd. For the value ‹G(q,t;q0)›, t > 0, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman–Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for ‹G(q,t;q0)› as |q − q0| → ∞ and t → ∞.
引用
收藏
页码:878 / 893
页数:15
相关论文
共 50 条
  • [1] Evolution in a Gaussian random field
    Alkhimov, VI
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 139 (03) : 878 - 893
  • [2] Nonlinear evolution of genus in a primordial random Gaussian density field
    Matsubara, T
    Suto, Y
    [J]. ASTROPHYSICAL JOURNAL, 1996, 460 (01): : 51 - 58
  • [3] ENVELOPE OF A GAUSSIAN RANDOM FIELD
    ADLER, RJ
    [J]. JOURNAL OF APPLIED PROBABILITY, 1978, 15 (03) : 502 - 513
  • [4] EXTRAPOLATION OF HOMOGENEOUS RANDOM FIELDS AND THE QUANTITY OF INFORMATION ON A GAUSSIAN RANDOM FIELD, CONTAINED IN ANOTHER GAUSSIAN RANDOM FIELD
    PINSKER, MS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1957, 112 (05): : 815 - 818
  • [5] THE CLUSTERING OF PEAKS IN A RANDOM GAUSSIAN FIELD
    LUMSDEN, SL
    HEAVENS, AF
    PEACOCK, JA
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1989, 238 (01) : 293 - 318
  • [6] Random process in a homogeneous Gaussian field
    Alkhimov V.I.
    [J]. Journal of Mathematical Sciences, 2010, 167 (6) : 727 - 740
  • [7] Gaussian Process Latent Random Field
    Zhong, Guoqiang
    Li, Wu-Jun
    Yeung, Dit-Yan
    Hou, Xinwen
    Liu, Cheng-Lin
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 679 - 684
  • [8] RANDOM INTERLACEMENTS AND THE GAUSSIAN FREE FIELD
    Sznitman, Alain-Sol
    [J]. ANNALS OF PROBABILITY, 2012, 40 (06): : 2400 - 2438
  • [9] Gaussian random field models of aerogels
    Quintanilla, J
    Reidy, RF
    Gorman, BP
    Mueller, DW
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (08) : 4584 - 4589
  • [10] Simulation of Gaussian random field in a ball
    Kolyukhin, Dmitriy
    Minakov, Alexander
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2022, 28 (01): : 85 - 95