Dynamic Strain Aging and Oxidation Effects on the Thermomechanical Fatigue Deformation of Reduced Activation Ferritic-Martensitic Steel

被引:0
|
作者
A. Nagesha
R. Kannan
V. S. Srinivasan
R. Sandhya
B. K. Choudhary
K. Laha
机构
[1] Indira Gandhi Centre for Atomic Research,Mechanical Metallurgy Division
关键词
Strain Amplitude; Stress Drop; Dynamic Strain Aging; Serrate Flow; Cyclic Softening;
D O I
暂无
中图分类号
学科分类号
摘要
Thermomechanical fatigue (TMF) behavior of a reduced activation ferritic-martensitic steel was investigated under in-phase (IP) and out-of-phase (OP) conditions under different mechanical strain amplitudes and temperature regimes. OP TMF was generally observed to result in the lowest cyclic lives compared to both IP TMF and isothermal low cycle fatigue (IF) at the maximum temperature (Tmax). The stress–strain hysteresis loops under TMF were marked by extensive serrations associated with dynamic strain aging (DSA) at the strain amplitudes of ±0.4 and ±0.6 pct. The serrations were noticed during the downward ramp of temperature that resulted in IP and OP TMF exhibiting jerky flow in the compressive and tensile portions, respectively. However, no evidence of serrated flow was seen under IF cycling at any of the temperatures within the TMF cycle. The stress response during IP TMF was marked by a near-saturation regime over 65 to 70 pct of life in contrast to continuous cyclic softening in the case of OP TMF. The marked life reduction observed under OP cycling at the strain amplitudes of ±0.4 and ±0.6 pct was attributed to the deleterious influence associated with oxidation, DSA, and tensile mean stress. The findings assume importance in the context of elevated temperature fatigue design, considering the fact that the IF data at Tmax are deemed adequately conservative in traditional design approaches.
引用
收藏
页码:1110 / 1127
页数:17
相关论文
共 50 条
  • [1] Dynamic Strain Aging and Oxidation Effects on the Thermomechanical Fatigue Deformation of Reduced Activation Ferritic-Martensitic Steel
    Nagesha, A.
    Kannan, R.
    Srinivasan, V. S.
    Sandhya, R.
    Choudhary, B. K.
    Laha, K.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (03): : 1110 - 1127
  • [2] Thermomechanical Fatigue Behavior of a Reduced Activation Ferritic-Martensitic Steel
    Nagesha, A.
    Kannan, R.
    Srinivasan, V. S.
    Parameswaran, P.
    Sandhya, R.
    Choudhary, B. K.
    Mathew, M. D.
    Jayakumar, T.
    Kumar, E. Rajendra
    STRUCTURAL INTEGRITY, 2014, 86 : 88 - 94
  • [3] Effects of Tungsten and Tantalum on Creep Deformation and Rupture Properties of Reduced Activation Ferritic-Martensitic Steel
    Vanaja, J.
    Laha, K.
    Mathew, M. D.
    Jayakumar, T.
    Kumar, E. Rajendra
    6TH INTERNATIONAL CONFERENCE ON CREEP, FATIGUE AND CREEP-FATIGUE INTERACTION, 2013, 55 : 271 - 276
  • [4] Influence of Thermomechanical Treatment in Austenitic and Ferritic Fields on Tensile Properties of Reduced Activation Ferritic-Martensitic Steel
    Prakash, P.
    Vanaja, J.
    Reddy, G. V. Prasad
    Laha, K.
    Rao, G. V. S. Nageswara
    STRUCTURAL INTEGRITY ASSESSMENT, ICONS 2018, 2020, : 115 - 127
  • [5] Effects of yttrium on microstructure and properties of reduced activation ferritic-martensitic steel
    Qiu, Guoxing
    Zhan, Dongping
    Li, Changsheng
    Qi, Min
    Jiang, Zhouhua
    Zhang, Huishu
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (16) : 2018 - 2029
  • [6] Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel
    Aritra Sarkar
    V. D. Vijayanand
    P. Parameswaran
    Vani Shankar
    R. Sandhya
    K. Laha
    M. D. Mathew
    T. Jayakumar
    E. Rajendra Kumar
    Metallurgical and Materials Transactions A, 2014, 45 : 3023 - 3035
  • [7] Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel
    Sarkar, Aritra
    Vijayanand, V. D.
    Parameswaran, P.
    Shankar, Vani
    Sandhya, R.
    Laha, K.
    Mathew, M. D.
    Jayakumar, T.
    Kumar, E. Rajendra
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (07): : 3023 - 3035
  • [8] Low-Cycle Fatigue Behavior of Reduced Activation Ferritic-Martensitic Steel at Elevated Temperatures
    Ahiale, Godwin Kwame
    Choi, Won-Doo
    Cho, Seungyon
    Park, Yi-Hyun
    Chun, Young-Bum
    Oh, Yong-Jun
    METALS AND MATERIALS INTERNATIONAL, 2023, 29 (01) : 71 - 80
  • [9] Cyclic deformation and microstructural behaviour of reduced activation ferritic-martensitic steels
    Batista, M. N.
    Alvarez-Armas, I.
    Giordana, M. F.
    Herenu, S.
    Armas, A. F.
    MATERIALS SCIENCE AND TECHNOLOGY, 2014, 30 (14) : 1826 - 1831
  • [10] Low-Cycle Fatigue Behavior of Reduced Activation Ferritic-Martensitic Steel at Elevated Temperatures
    Godwin Kwame Ahiale
    Won-Doo Choi
    Seungyon Cho
    Yi-Hyun Park
    Young-Bum Chun
    Yong-Jun Oh
    Metals and Materials International, 2023, 29 : 71 - 80