The Maxwell-Lorentz model for optical pulses

被引:0
|
作者
M. P. Sørensen
M. Brio
机构
[1] Technical University of Denmark,Department of Mathematics
[2] University of Arizona,Department of Mathematics, Arizona Center for Mathematical Sciences
关键词
Soliton; European Physical Journal Special Topic; Travel Wave Solution; Optical Pulse; Carrier Wave;
D O I
暂无
中图分类号
学科分类号
摘要
Dynamics of optical pulses, especially of ultra short femtosecond pulses, are of great technological and theoretical interest. The dynamics of optical pulses is usually studied using the nonlinear Schrödinger (NLS) equation model. While such approach works surprisingly well for description of pulse propagation, at least in the femtosecond regime, the full system posses a wealth of new wave phenomena that we explore in this paper: envelope collapse regularization resulting in the orignal pulse splitting; development of infinite gradients in the carrier wave; existence of the stable top hat traveling wave solutions formed by a pair of kink anti-kink shaped optical waves.
引用
下载
收藏
页码:253 / 264
页数:11
相关论文
共 50 条
  • [1] The Maxwell-Lorentz model for optical pulses
    Sorensen, M. P.
    Brio, M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 147 (1): : 253 - 264
  • [2] Adiabatic Limit for the Maxwell-Lorentz Equations
    M. Kunze
    H. Spohn
    Annales Henri Poincaré, 2000, 1 : 625 - 653
  • [3] Adiabatic limit for the Maxwell-Lorentz equations
    Kunze, M
    Spohn, H
    ANNALES HENRI POINCARE, 2000, 1 (04): : 625 - 653
  • [4] The Maxwell-Lorentz system of a rigid charge
    Bauer, G
    Dürr, D
    ANNALES HENRI POINCARE, 2001, 2 (01): : 179 - 196
  • [5] The Maxwell-Lorentz System of a Rigid Charge
    Gernot Bauer
    Detlef Dürr
    Annales Henri Poincaré, 2001, 2 : 179 - 196
  • [6] Maxwell-Lorentz Dynamics of Rigid Charges
    Bauer, G.
    Deckert, D. -A.
    Duerr, D.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (09) : 1519 - 1538
  • [7] ON RELAXATION OF A MAXWELL-LORENTZ GAS IN AN ELECTRIC FIELD
    BRAGLIA, GL
    NUOVO CIMENTO B, 1968, 58 (01): : 352 - &
  • [8] RELATIVISTIC DERIVATION OF MAXWELL-LORENTZ EQUATIONS FOR MEDIA
    CHELNOKOV, MB
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1983, 26 (12): : 71 - 75
  • [9] Kink shape solutions of the Maxwell-Lorentz system
    Sorensen, MP
    Webb, GM
    Brio, M
    Moloney, JV
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [10] Stochastic Maxwell-Lorentz equation in radiation damping
    Petrosky, T
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 98 (02) : 103 - 111