On the class semigroup of a numerical semigroup

被引:0
|
作者
Valentina Barucci
Faten Khouja
机构
[1] Sapienza,Dipartimento di Matematica
[2] Università di Roma,undefined
[3] Department of Mathematics,undefined
[4] Faculty of Sciences,undefined
来源
Semigroup Forum | 2016年 / 92卷
关键词
Numerical semigroup; Class semigroup; Reduction number;
D O I
暂无
中图分类号
学科分类号
摘要
The class semigroup of a numerical semigroup S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is the semigroup S(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}(S)$$\end{document} of classes of the relative ideals of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}. Our aim is to find some properties of S(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}(S)$$\end{document}. In particular we observe that S(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}(S)$$\end{document} is finite and compute its cardinality in some cases, using the poset of gaps of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}. Moreover, we study the generators of S(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}(S)$$\end{document} and the reduction number of its elements.
引用
收藏
页码:377 / 392
页数:15
相关论文
共 50 条
  • [1] On the class semigroup of a numerical semigroup
    Barucci, Valentina
    Khouja, Faten
    SEMIGROUP FORUM, 2016, 92 (02) : 377 - 392
  • [2] Every numerical semigroup is one half of a symmetric numerical semigroup
    Rosales, J. C.
    Garcia-Sanchez, P. A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (02) : 475 - 477
  • [3] Apery Sets and the Ideal Class Monoid of a Numerical Semigroup
    Casabella, Laura
    D'Anna, Marco
    Garcia-Sanchez, Pedro A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [4] Permutability class of a semigroup
    Kisielewicz, A
    JOURNAL OF ALGEBRA, 2000, 226 (01) : 295 - 310
  • [5] The numerical duplication of a numerical semigroup
    M. D’Anna
    F. Strazzanti
    Semigroup Forum, 2013, 87 : 149 - 160
  • [6] THE COMPLEXITY OF A NUMERICAL SEMIGROUP
    Garcia-Garcia, J., I
    Moreno-Frias, M. A.
    Rosales, J. C.
    Vigneron-Tenorio, A.
    QUAESTIONES MATHEMATICAE, 2023, 46 (09) : 1847 - 1861
  • [7] The numerical duplication of a numerical semigroup
    D'Anna, M.
    Strazzanti, F.
    SEMIGROUP FORUM, 2013, 87 (01) : 149 - 160
  • [8] Numerical semigroup algebras
    Huang, I-Chiau
    Kim, Mee-Kyoung
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1079 - 1088
  • [9] The doubles of a numerical semigroup
    Robles-Perez, Aureliano M.
    Rosales, Jose Carlos
    Vasco, Paulo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (03) : 387 - 396
  • [10] Compositions of a numerical semigroup
    Gu, Ze
    DISCRETE MATHEMATICS AND APPLICATIONS, 2019, 29 (05): : 345 - 350