Study of the Choice of Excitation Frequency for Sub Surface Defect Detection in Electrically Thick Conducting Specimen Using Eddy Current Testing

被引:0
|
作者
Mahesh Raja Perumal
Krishnan Balasubramaniam
Kavitha Arunachalam
机构
[1] Indian Institute of Technology Madras,Electromagnetic Research Laboratory, Department of Engineering Design
[2] Indian Institute of Technology Madras,Department of Mechanical Engineering, Centre for Non
来源
关键词
Conducting specimen; Eddy current testing; Sub surface defect; Thick plate;
D O I
暂无
中图分类号
学科分类号
摘要
Understanding the scope and limitations of non-destructive testing procedure is essential for selecting the appropriate test parameters for material inspection. This paper presents the scope of material (δs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \delta_{s} $$\end{document}) and probe dependent (δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \delta_{t} $$\end{document}) penetration depths for determining the optimal test frequency (fopt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f_{opt} ) $$\end{document} for detection of sub surface defects in electrically thick conducting specimens. Numerical modelling is carried out for a pancake coil above an electrically thick aluminium plate, t/δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t/\delta_{t} $$\end{document} > 1, to study the influence of the EC probe and defect location (tdf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t_{df} $$\end{document}) on the test frequency for near and deep sub surface defects. The study concludes that the optimal test frequency, fopt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f_{opt} $$\end{document} for detection of deep sub surface defects (tdf/t≈1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t_{df} /t \approx 1 $$\end{document}) is determined by the probe dependent skin depth, δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \delta_{t} $$\end{document}, and the plate thickness is related to fopt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f_{opt} $$\end{document} by, t∝1/fopt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t \propto 1/\sqrt {f_{opt} } $$\end{document}. The numerical observations were experimentally validated for machined sub surface notches on a 10 mm thick (t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t $$\end{document}) aluminium plate.
引用
收藏
相关论文
共 46 条
  • [1] Study of the Choice of Excitation Frequency for Sub Surface Defect Detection in Electrically Thick Conducting Specimen Using Eddy Current Testing
    Perumal, Mahesh Raja
    Balasubramaniam, Krishnan
    Arunachalam, Kavitha
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2018, 37 (04)
  • [2] Experimental Validation of an Eddy Current Probe for Defect Detection in Thick Conducting Specimen
    Raja, Mahesh P.
    Arunachalam, Kavitha
    Balasubramanian, Krishnan
    42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE, 2016, 1706
  • [3] Surface and near surface defect detection in thick copper EB-welds using eddy current testing
    Pitkanen, Jorma
    Lipponen, Aarne
    BALTICA VIII: LIFE MANAGEMENT AND MAINTENANCE FOR POWER PLANTS, VOL 1, 2010, 264 : 240 - 255
  • [4] Deep Defect Detection Using Eddy Current Testing with AMR Sensor
    He, D. F.
    Shiwa, M.
    PIERS 2013 STOCKHOLM: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2013, : 493 - 495
  • [5] Study on the Optimization of Eddy Current Testing Coil and the Defect Detection Sensitivity
    Zhou, H. T.
    Hou, K.
    Pan, H. L.
    Chen, J. J.
    Wang, Q. M.
    PRESSURE VESSEL TECHNOLOGY: PREPARING FOR THE FUTURE, 2015, 130 : 1649 - 1657
  • [6] Eddy Current Testing of Cracks using Multi-Frequency and Noise Excitation
    Pasadas, Dario J.
    Ribeiro, Artur L.
    Ramos, Helena. G.
    Feng, Bo
    Baskaran, Prashanth
    2018 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC): DISCOVERING NEW HORIZONS IN INSTRUMENTATION AND MEASUREMENT, 2018, : 907 - 912
  • [7] Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique
    Fan, Mengbao
    Wang, Qi
    Cao, Binghua
    Ye, Bo
    Sunny, Ali Imam
    Tian, Guiyun
    SENSORS, 2016, 16 (05)
  • [8] Sub Surface Material Characterization using High Frequency Eddy Current Spectroscopy
    Heuer, Henning
    Hillmann, Susanne
    Klein, Marcus
    Meyendorf, Norbert
    SMART SENSOR PHENOMENA, TECHNOLOGY, NETWORKS, AND SYSTEMS 2010, 2010, 7648
  • [9] Sub Surface Material Characterization using High Frequency Eddy Current Spectroscopy
    Heuer, Henning
    Hillmann, Susanne
    Klein, Marcus
    Meyendorf, Norbert
    RELIABILITY AND MATERIALS ISSUES OF SEMICONDUCTOR OPTICAL AND ELECTRICAL DEVICES AND MATERIALS, 2010, 1195
  • [10] Development of Pulsed Eddy Current Instrument and Probe for Detection of Sub-Surface Flaws in Thick Materials
    Rao, K. Samba Siva
    Rao, B. Purna Chandra
    Thirunavukkarasu, S.
    IETE TECHNICAL REVIEW, 2017, 34 (05) : 572 - 578