Uniqueness of grim hyperplanes for mean curvature flows

被引:0
|
作者
Ditter Tasayco
Detang Zhou
机构
[1] Universidade Federal Fluminense,Instituto de Matemática e Estatística
来源
Archiv der Mathematik | 2017年 / 109卷
关键词
Mean curvature flow; Translating soliton; Stability; Primary 53C21; Secondary 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that an immersed nontrivial translating soliton for a mean curvature flow in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n+1}$$\end{document}(n=2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3)$$\end{document} is a grim hyperplane if and only if it is mean convex and has weighted total extrinsic curvature of at most quadratic growth. For an embedded translating soliton Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} with nonnegative scalar curvature, we prove that if the mean curvature of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} does not change signs on each end, then Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} must have positive scalar curvature unless it is either a hyperplane or a grim hyperplane.
引用
收藏
页码:191 / 200
页数:9
相关论文
共 50 条