Obtaining infinitely many degrees of inconsistency by adding a strictly paraconsistent negation to classical logic

被引:0
|
作者
Peter Verdée
机构
[1] Université catholique de Louvain,Institut supérieur de philosophie
来源
Synthese | 2021年 / 198卷
关键词
Many-valued logic; Paraconsistent logic; Negation; Combining logics; Degrees of inconsistency; Entailment;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to a consequence relation combining the negation of Classical Logic (CL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {CL}$$\end{document}) and a paraconsistent negation based on Graham Priest’s Logic of Paradox (LP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {LP}$$\end{document}). We give a number of natural desiderata for a logic L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {L}$$\end{document} that combines both negations. They are motivated by a particular property-theoretic perspective on paraconsistency and are all about warranting that the combining logic has the same characteristics as the combined logics, without giving up on the radically paraconsistent nature of the paraconsistent negation. We devise the logic CLP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {CLP}$$\end{document} by means of an axiomatization and three equivalent semantical characterizations (a non-deterministic semantics, an infinite-valued set-theoretic semantics and an infinite-valued semantics with integer numbers as values). By showing that this logic is maximally paraconsistent, we prove that CLP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {CLP}$$\end{document} is the only logic satisfying all postulated desiderata. Finally we show how the logic’s infinite-valued semantics permits defining different types of entailment relations.
引用
收藏
页码:5415 / 5449
页数:34
相关论文
共 4 条