Phase nucleation in curved space

被引:0
|
作者
Leopoldo R. Gómez
Nicolás A. García
Vincenzo Vitelli
José Lorenzana
Daniel A. Vega
机构
[1] Universidad Nacional del Sur—IFISUR—CONICET,Department of Physics
[2] Instituut-Lorentz,Physics Department
[3] Universiteit Leiden,undefined
[4] Institute for Complex Systems,undefined
[5] Consiglio Nazionale delle Ricerche,undefined
[6] University of Rome La Sapienza,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature.
引用
收藏
相关论文
共 50 条
  • [1] Phase nucleation in curved space
    Gomez, Leopoldo R.
    Garcia, Nicolas A.
    Vitelli, Vincenzo
    Lorenzana, Jose
    Vega, Daniel A.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [2] NUCLEATION RATES IN FLAT AND CURVED SPACE
    GARRIGA, J
    [J]. PHYSICAL REVIEW D, 1994, 49 (12): : 6327 - 6342
  • [3] Phase space path integral in curved space
    Ferraro, R
    Leston, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (31): : 5033 - 5042
  • [4] LAGRANGIAN FOR DIFFUSION IN CURVED PHASE SPACE
    GRAHAM, R
    [J]. PHYSICAL REVIEW LETTERS, 1977, 38 (02) : 51 - 53
  • [5] RELIEVING CHOLESTERIC FRUSTRATION - THE BLUE PHASE IN A CURVED SPACE
    SETHNA, JP
    WRIGHT, DC
    MERMIN, ND
    [J]. PHYSICAL REVIEW LETTERS, 1983, 51 (06) : 467 - 470
  • [6] EXTENDED PARTICLES AND THEIR SPECTRA IN CURVED PHASE-SPACE
    CAIANIELLO, ER
    VILASI, G
    [J]. LETTERE AL NUOVO CIMENTO, 1981, 30 (15): : 469 - 473
  • [7] GEOMETRIC-QUANTIZATION OF CURVED PHASE-SPACE
    NISHIOKA, M
    [J]. HADRONIC JOURNAL, 1981, 5 (01): : 207 - 213
  • [8] NONCOMMUTATIVE AND DYNAMICAL ANALYSIS IN A CURVED PHASE-SPACE
    Abreu, E. M. C.
    Rizzuti, B. F.
    Mendes, A. C. R.
    Freitas, M. A.
    Nikoofard, V.
    [J]. ACTA PHYSICA POLONICA B, 2015, 46 (04): : 879 - 903
  • [9] Robotic swimming in curved space via geometric phase
    Li, Shengkai
    Wang, Tianyu
    Kojouharov, Velin H.
    McInerney, James
    Aydin, Enes
    Ozkan-Aydin, Yasemin
    Goldman, Daniel I.
    Rocklin, Zeb
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (31)
  • [10] Nucleation Work on Curved Substrates
    Kozisek, Zdenek
    Kral, Robert
    Zemenova, Petra
    [J]. METALS, 2023, 13 (11)