Unsaturated soils permeability estimation by adaptive neuro-fuzzy inference system

被引:0
|
作者
Mehdi Hashemi Jokar
Abdolkarim Khosravi
Ali Heidaripanah
Fazlollah Soltani
机构
[1] Graduate University of Advanced Technology,Department of Geotechnical Engineering
[2] Technical and Soil Mechanics Laboratory,Consulting Engineering Department
来源
Soft Computing | 2019年 / 23卷
关键词
Unsaturated soils permeability; ANFIS; Subtractive clustering; Prediction model;
D O I
暂无
中图分类号
学科分类号
摘要
Unsaturated soils permeability (Kunsat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K_{\text{unsat}} $$\end{document}) is a required parameter when modeling water flow and transport processes in the subsurface. Having highly nonlinear relationship with volumetric water content (θw) and suction (S), the value of Kunsat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K_{\text{unsat}} $$\end{document} varies by several magnitudes when moving from clayey to gravel soils. On the other hand, determination of Kunsat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K_{\text{unsat}} $$\end{document} is very difficult, costly, and time consuming. Recently, adaptive neuro-fuzzy inference system (ANFIS) has been used for modeling and prediction of such complex and nonlinear problems. Investigated in this paper is the capability of ANFIS for modeling Kunsat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K_{\text{unsat}} $$\end{document}. The database used in ANFIS modeling is collected from SoilVision. This database contains 4347 Kunsat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K_{\text{unsat}} $$\end{document} test records on 245 soil types collected from all around the world; it approximately covers triangular chart defined by US Department of Agriculture System for classifying mixed soils. In order to get the optimum number of ANFIS training epochs and ANFIS structure, trial and error method was used. To check the predictive capacity of the ANFIS model, several statistics such as determination coefficient (R2), Root Mean Square Error, Mean Absolute Error and Variance Account For were calculated. The results demonstrated that the ANFIS model can be successfully applied for prediction of Kunsat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K_{\text{unsat}} $$\end{document}.
引用
收藏
页码:6871 / 6881
页数:10
相关论文
共 50 条
  • [1] Unsaturated soils permeability estimation by adaptive neuro-fuzzy inference system
    Jokar, Mehdi Hashemi
    Khosravi, Abdolkarim
    Heidaripanah, Ali
    Soltani, Fazlollah
    [J]. SOFT COMPUTING, 2019, 23 (16) : 6871 - 6881
  • [2] Using adaptive neuro-fuzzy inference system for modeling unsaturated soils shear strength
    Mehdi Hashemi Jokar
    Sohrab Mirasi
    [J]. Soft Computing, 2018, 22 : 4493 - 4510
  • [3] Using adaptive neuro-fuzzy inference system for modeling unsaturated soils shear strength
    Jokar, Mehdi Hashemi
    Mirasi, Sohrab
    [J]. SOFT COMPUTING, 2018, 22 (13) : 4493 - 4510
  • [4] Predicting the effective stress parameter of unsaturated soils using adaptive neuro-fuzzy inference system
    Rahnema, H.
    Jokar, M. Hashemi
    Khabbaz, H.
    [J]. SCIENTIA IRANICA, 2019, 26 (06) : 3140 - 3158
  • [5] Adaptive Neuro-fuzzy Inference system into Induction Motor : Estimation
    Boussada, Zina
    Ben Hamed, Mouna
    Sbita, Lassaad
    [J]. 2014 INTERNATIONAL CONFERENCE ON ELECTRICAL SCIENCES AND TECHNOLOGIES IN MAGHREB (CISTEM), 2014,
  • [6] Illuminant Estimation Using Adaptive Neuro-Fuzzy Inference System
    Luo, Yunhui
    Wang, Xingguang
    Wang, Qing
    Chen, Yehong
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [7] Channel estimation based on adaptive neuro-fuzzy inference system in OFDM
    Seyman, M. Nuri
    Taspinar, Necmi
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2008, E91B (07) : 2426 - 2430
  • [9] Runoff estimation using modified adaptive neuro-fuzzy inference system
    Nath, Amitabha
    Mthethwa, Fisokuhle
    Saha, Goutam
    [J]. ENVIRONMENTAL ENGINEERING RESEARCH, 2020, 25 (04) : 545 - 553
  • [10] Swine live weight estimation by adaptive neuro-fuzzy inference system
    Okinda, Cedric
    Liu, Longhen
    Zhang, Guangyue
    Shen, Mingxia
    [J]. INDIAN JOURNAL OF ANIMAL RESEARCH, 2018, 52 (06) : 923 - 928