Vortex Dynamics for the Nonlinear Maxwell–Klein–Gordon Equation

被引:0
|
作者
Yong Yu
机构
[1] University of Iowa,Department of Mathematics
关键词
Vortex; Gordon Equation; Vortex Dynamics; Landau Equation; Coulomb Gauge;
D O I
暂无
中图分类号
学科分类号
摘要
We derive the vortex dynamics for the nonlinear Maxwell–Klein–Gordon equation with the Ginzburg–Landau type potential. In particular, we consider the case when the external electric fields are of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O( | \log \epsilon |^{\frac{1}{2}})}$$\end{document}. We study the convergence of the space–time Jacobian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial_t \psi \cdot i \nabla \psi}$$\end{document} as an interaction term between the vortices and electric fields. An explicit form of the limiting vector measure is shown.
引用
收藏
页码:743 / 776
页数:33
相关论文
共 50 条