A critical aspect of wire bonding is the quality of the bonding strength that contributes the major part of yield loss to the integrated circuit assembly process. This paper applies an integrated approach using a neural networks and genetic algorithms to optimize IC wire bonding process. We first use a back-propagation network to provide the nonlinear relationship between factors and the response based on the experimental data from a semiconductor manufacturing company in Taiwan. Then, a genetic algorithms is applied to obtain the optimal factor settings. A comparison between the proposed approach and the Taguchi method was also conducted. The results demonstrate the superiority of the proposed approach in terms of process capability.