A spatial functional count model for heterogeneity analysis in time

被引:0
|
作者
Antoni Torres-Signes
María P. Frías
Jorge Mateu
María D. Ruiz-Medina
机构
[1] University of Málaga,Department of Statistics and Operation Research, Faculty of Sciences
[2] University of Jaén,Department of Statistics and Operation Research, Faculty of Sciences
[3] University Jaume I,Department of Mathematics and Operation Research, Faculty of Sciences
[4] University of Granada,Department of Statistics and Operation Research, Faculty of Sciences
关键词
Cox processes in Hilbert spaces; Spatial functional estimation; Spectral wavelet-based analysis; MSC code1 60G25; 60G60 and 62J05; MSC code2 62J10;
D O I
暂无
中图分类号
学科分类号
摘要
A spatial curve dynamical model framework is adopted for functional prediction of counts in a spatiotemporal log-Gaussian Cox process model. Our spatial functional estimation approach handles both wavelet-based heterogeneity analysis in time, and spectral analysis in space. Specifically, model fitting is achieved by minimising the information divergence or relative entropy between the multiscale model underlying the data, and the corresponding candidates in the spatial spectral domain. A simulation study is carried out within the family of log-Gaussian Spatial Autoregressive ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^{2}$$\end{document}-valued processes (SARℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^{2}$$\end{document} processes) to illustrate the asymptotic properties of the proposed spatial functional estimators. We apply our modelling strategy to spatiotemporal prediction of respiratory disease mortality.
引用
收藏
页码:1825 / 1849
页数:24
相关论文
共 50 条
  • [1] A spatial functional count model for heterogeneity analysis in time
    Torres-Signes, Antoni
    Frias, Maria P.
    Mateu, Jorge
    Ruiz-Medina, Maria D.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (09) : 1825 - 1849
  • [2] Dynamical analysis of a degenerate and time delayed virus infection model with spatial heterogeneity
    Yang, Yu
    Chen, Jing
    Zou, Lan
    STUDIES IN APPLIED MATHEMATICS, 2024, 152 (01) : 279 - 306
  • [3] A count data model with unobserved heterogeneity
    Gourieroux, C
    Visser, M
    JOURNAL OF ECONOMETRICS, 1997, 79 (02) : 247 - 268
  • [4] Long time behavior of a degenerate NPZ model with spatial heterogeneity
    Cheng, Hongyu
    Lv, Yunfei
    Yuan, Rong
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [5] A new spatial count data model with time-varying parameters
    Buddhavarapu, Prasad
    Bansal, Prateek
    Prozzi, Jorge A.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2021, 150 : 566 - 586
  • [6] Mathematical analysis of an HBV model with antibody and spatial heterogeneity
    Huang, Kuo-Sheng
    Shyu, Yu-Chiau
    Lin, Chih-Lang
    Wang, Feng-Bin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (02) : 1820 - 1837
  • [7] An analysis of pedestrian crashes using a spatial count data model
    Apardian, Rebekka E.
    Smirnov, Oleg
    PAPERS IN REGIONAL SCIENCE, 2020, 99 (05) : 1317 - +
  • [8] Patent data analysis using functional count data model
    Kim, Jong-Min
    Kim, Nak-Kyeong
    Jung, Yoonsung
    Jun, Sunghae
    SOFT COMPUTING, 2019, 23 (18) : 8815 - 8826
  • [9] Patent data analysis using functional count data model
    Jong-Min Kim
    Nak-Kyeong Kim
    Yoonsung Jung
    Sunghae Jun
    Soft Computing, 2019, 23 : 8815 - 8826
  • [10] Spatial scale, heterogeneity and functional responses
    Bergström, U
    Englund, G
    JOURNAL OF ANIMAL ECOLOGY, 2004, 73 (03) : 487 - 493