Existence theorem and global solution for semilinear edge-degenerate hypoelliptic equations

被引:0
|
作者
Ali Asghar Jafari
Mohsen Alimohammady
机构
[1] University of Mazandaran,Department of Mathematics, Faculty of Mathematical Sciences
关键词
Semilinear equations; Edge Sobolev space; Totally characteristic degeneracy; Global solution; Blow-up; 35K10; 35B40; 58J45;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we use the edge-type of Sobolev inequality,Hardy inequlity and Poincaré inequality to prove the existence theorem for a class of semilinear degenerate hypoelliptic equation on manifolds with conical singularities. In this paper we shall find the existence theorem for the problem 1.1 in cone Sobolev space H2,01,N2(E).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}^{1,\frac{N}{2}}_{2,0}({\mathbb {E}}).$$\end{document} Finally, we obtain existence result of global solutions with exponential decay and show the blow-up in finite time of solutions.
引用
收藏
页码:391 / 417
页数:26
相关论文
共 50 条