Construction of Na3V2(PO4)3/C nanoplate as cathode for stable sodium ion storage

被引:0
|
作者
Lin Li
Hao Zheng
Shiquan Wang
Xiao Chen
Shuijin Yang
Chuanqi Feng
机构
[1] Anshun University,College of Chemistry and Chemical Engineering
[2] Hubei University,Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
[3] Hubei Normal University,Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
来源
Ionics | 2022年 / 28卷
关键词
Na; V; (PO; ); Nanoplate; Sodium ion batteries; Cathode materials; Electrochemical properties;
D O I
暂无
中图分类号
学科分类号
摘要
NASICON type Na3V2(PO4)3, as a class of cathode material, have attracted much attention and achieved great success especially in case of sodium-ion battery. Herein, carbon-coated Na3V2(PO4)3 nanoplates are fabricated through a solvothermal method combined with thermal treatment. The nanoplate structure and carbon-coated layer could bring several advantages; for example, the nanoplate structure can provide sufficient specific surface area to contact with electrolyte, leading to easy transmission of sodium ions. In addition, carbon coating could indeed increase the electrode conductivity and simultaneously restrain the volume expansion of Na3V2(PO4)3 electrode material during the intercalation/extraction of Na+ ions. Consequently, the carbon-coated Na3V2(PO4)3 nanoplates exhibit impressive sodium storage performance with a high reversible capacity of 107 mAh g–1 at 1 C after 300 cycles and 91 mAh g–1 at 10 C after 2000 cycles.
引用
收藏
页码:981 / 988
页数:7
相关论文
共 50 条
  • [1] Construction of Na3V2(PO4)3/C nanoplate as cathode for stable sodium ion storage
    Li, Lin
    Zheng, Hao
    Wang, Shiquan
    Chen, Xiao
    Yang, Shuijin
    Feng, Chuanqi
    IONICS, 2022, 28 (02) : 981 - 988
  • [2] Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries
    Liu, Jun
    Tang, Kun
    Song, Kepeng
    van Aken, Peter A.
    Yu, Yan
    Maier, Joachim
    NANOSCALE, 2014, 6 (10) : 5081 - 5086
  • [3] A stable and superior performance of Na3V2(PO4)3/C nanocomposites as cathode for sodium-ion batteries
    Hu, Fangdong
    Jiang, Xiaolei
    INORGANIC CHEMISTRY COMMUNICATIONS, 2020, 115
  • [4] Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries
    Chen, Yanjun
    Xu, Youlong
    Sun, Xiaofei
    Zhang, Baofeng
    He, Shengnan
    Li, Long
    Wang, Chao
    JOURNAL OF POWER SOURCES, 2018, 378 : 423 - 432
  • [5] Towards Highly Stable Storage of Sodium Ions: A Porous Na3V2(PO4)3/C Cathode Material for Sodium-Ion Batteries
    Shen, Wei
    Wang, Cong
    Liu, Haimei
    Yang, Wensheng
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (43) : 14712 - 14718
  • [6] Na3V2(PO4)3: an advanced cathode for sodium-ion batteries
    Zhang, Xianghua
    Rui, Xianhong
    Chen, Dong
    Tan, Huiteng
    Yang, Dan
    Huang, Shaoming
    Yu, Yan
    NANOSCALE, 2019, 11 (06) : 2556 - 2576
  • [7] Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries
    Li, Hui
    Bai, Ying
    Wu, Feng
    Ni, Qiao
    Wu, Chuan
    SOLID STATE IONICS, 2015, 278 : 281 - 286
  • [8] Insights into the charge storage mechanism of Na3V2(PO4)3 cathode in sodium-ion batteries
    Bo Li
    Jing Liu
    Xia Xiu
    Guanglei Yang
    Kaixing Zhu
    Bulletin of Materials Science, 46
  • [9] Insights into the charge storage mechanism of Na3V2(PO4)3 cathode in sodium-ion batteries
    Li, Bo
    Liu, Jing
    Xiu, Xia
    Yang, Guanglei
    Zhu, Kaixing
    BULLETIN OF MATERIALS SCIENCE, 2023, 46 (02)
  • [10] The Synthesis of Porous Na3V2(PO4)3 for Sodium-Ion Storage
    Xiong, Hailong
    Qi, Chunyu
    Lv, Shiquan
    Zhang, Ling
    Qiao, Zhen-An
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (60) : 14790 - 14799