Chaotic Expansions of Elements of the Universal Enveloping Superalgebra Associated with a Z2-graded Quantum Stochastic Calculus

被引:0
|
作者
T. M. W. Eyre
机构
[1] Department of Mathematics,
[2] University of Nottingham,undefined
[3] University Park,undefined
[4] Nottingham NG7 2RD,undefined
[5] United Kingdom. E-mail: tmwe@maths.nott.ac.uk},undefined
来源
关键词
Polynomial Function; Integrator Process; Multiplication Table; Stochastic Integrator; Stochastic Calculus;
D O I
暂无
中图分类号
学科分类号
摘要
Given a polynomial function f of classical stochastic integrator processes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} whose differentials satisfy a closed Ito multiplication table, we can express the stochastic derivative of f as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} We establish an analogue of this formula in the form of a chaotic decomposition for Z2-graded theories of quantum stochastic calculus based on the natural coalgebra structure of the universal enveloping superalgebra.
引用
收藏
页码:9 / 28
页数:19
相关论文
共 16 条