Generalized inverses of elements and their polarities in rings

被引:0
|
作者
Tianli Li
Fei Peng
Huihui Zhu
机构
[1] Department of Basic Education,School of Mathematics
[2] Anhui Vocational and Technical College,undefined
[3] Hefei University of Technology,undefined
关键词
Quasipolar elements; Drazin inverses; generalized Drazin inverses; Idempotents; Natural partial orders; 15A09; 06A11; 16U99;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be an associative ring with unity 1. The main contribution of this paper is to introduce the notion of generalized quasipolar elements in R as an extension of quasipolar elements of Koliha and Patrício. Several necessary and sufficient conditions of a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in R$$\end{document} to be generalized quasipolar are derived. Then, we define a class of outer generalized inverses, called weakly generalized Drazin inverses generalizing Koliha’s generalized Drazin inverses. It is shown that a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in R$$\end{document} has a weakly generalized Drazin inverse if and only if it is generalized quasipolar. Finally, existence criteria for weakly generalized Drazin inverses are obtained.
引用
收藏
相关论文
共 50 条
  • [1] Generalized inverses of elements and their polarities in rings
    Li, Tianli
    Peng, Fei
    Zhu, Huihui
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [2] Characterizations of EP, normal and Hermitian elements in rings using generalized inverses
    Ma Y.
    Chen J.
    Han R.
    Chen, Jianlong (jlchen@seu.edu.cn), 2017, Southeast University (33) : 249 - 252
  • [3] Outer generalized inverses in rings
    Djordjevic, DS
    Wei, YM
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 3051 - 3060
  • [4] Generalized Hirano inverses in rings
    Chen, Huanyin
    Sheibani, Marjan
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (07) : 2967 - 2978
  • [5] GENERALIZED INVERSES OF A SUM IN RINGS
    Castro-Gonzalez, N.
    Mendes-Araujo, C.
    Patricio, Pedro
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (01) : 156 - 164
  • [6] Generalized Zhou inverses in rings
    Chen, Huanyin
    Abdolyousefi, Marjan Sheibani
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4098 - 4108
  • [7] GENERALIZED INVERSES IN REGULAR RINGS
    SAVAGE, TR
    PACIFIC JOURNAL OF MATHEMATICS, 1980, 87 (02) : 455 - 466
  • [8] Generalized Inverses of Matrices over Rings
    韩瑞珠
    陈建龙
    Chinese Quarterly Journal of Mathematics, 1992, (04) : 40 - 47
  • [9] THE ABSORPTION LAWS FOR THE GENERALIZED INVERSES IN RINGS
    Jin, Hongwei
    Benitez, Julio
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 827 - 842
  • [10] Generalized inverses of centralizers of semiprime rings
    Chaudhry M.A.
    Samman M.S.
    aequationes mathematicae, 2006, 71 (3) : 246 - 252