The Navier Wall Law at a Boundary with Random Roughness

被引:33
|
作者
Gerard-Varet, David [1 ]
机构
[1] Ecole Normale Super, CNRS, DMA, F-75005 Paris, France
关键词
VISCOUS-FLOW; ASYMPTOTIC ANALYSIS; HOMOGENIZATION; SURFACES;
D O I
10.1007/s00220-008-0597-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Navier-Stokes equation in a domain with irregular boundaries. The irregularity is modeled by a spatially homogeneous random process, with typical size epsilon << 1. In the parent paper [8], we derived a homogenized boundary condition of Navier type as epsilon -> 0. We show here that for a large class of boundaries, this Navier condition provides a O(epsilon(3/2)vertical bar ln epsilon vertical bar(1/2)) approximation in L(2), instead of O(epsilon(3/2)) for periodic irregularities. Our result relies on the study of an auxiliary boundary layer system. Decay properties of this boundary layer are deduced from a central limit theorem for dependent variables.
引用
收藏
页码:81 / 110
页数:30
相关论文
共 50 条
  • [1] Wall laws for fluid flows at a boundary with random roughness
    Basson, Arnaud
    Gerard-Varet, David
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (07) : 941 - 987
  • [2] Law-of-the-wall in a boundary-layer over regularly distributed roughness elements
    Huang, G.
    Simoens, S.
    Vinkovic, I.
    Le Ribault, C.
    Dupont, S.
    Bergametti, G.
    JOURNAL OF TURBULENCE, 2016, 17 (05): : 518 - 541
  • [3] The effect of roughness on the boundary condition on porous wall
    Marusic-Paloka, Eduard
    Pazanin, Igor
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [4] The effect of roughness on the boundary condition on porous wall
    Eduard Marušić-Paloka
    Igor Pažanin
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [5] Random-Roughness Hydrodynamic Boundary Conditions
    Kunert, Christian
    Harting, Jens
    Vinogradova, Olga I.
    PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [6] Momentum Absorption in Rough-Wall Boundary Layers with Sparse Roughness Elements in Random and Clustered Distributions
    M. R. Raupach
    D. E. Hughes
    H. A. Cleugh
    Boundary-Layer Meteorology, 2006, 120 : 201 - 218
  • [7] Momentum absorption in rough-wall boundary layers with sparse roughness elements in random and clustered distributions
    Raupach, M. R.
    Hughes, D. E.
    Cleugh, H. A.
    BOUNDARY-LAYER METEOROLOGY, 2006, 120 (02) : 201 - 218
  • [8] Navier wall law for nonstationary viscous incompressible flows
    Higalci, Mitsuo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (10) : 7358 - 7396
  • [9] Average of the Navier's law on the rapidly oscillating boundary
    Marusic-Paloka, E
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 259 (02) : 685 - 701
  • [10] BOUNDARY SHEAR DISTRIBUTION IN CHANNELS WITH VARYING WALL ROUGHNESS
    GHOSH, SN
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS PART 2-RESEARCH AND THEORY, 1972, 53 (DEC): : 529 - 544