Neuregulin1 Attenuates H2O2-Induced Reductions in EAAC1 Protein Levels and Reduces H2O2-Induced Oxidative Stress

被引:0
|
作者
Jun-Ho Lee
Ji-Young Yoo
Han-byeol Kim
Hong-Il Yoo
Dae-Yong Song
Sun Seek Min
Tai-Kyoung Baik
Ran-Sook Woo
机构
[1] Daejeon University,Department of Emergency Medical Technology
[2] Eulji University,Department of Anatomy and Neuroscience, College of Medicine
[3] Eulji University,Department of Physiology and Biophysics, College of Medicine
来源
Neurotoxicity Research | 2019年 / 35卷
关键词
H; O; Neuregulin 1; EAAC1; Reactive oxygen species; Superoxide dismutase; Glutathione peroxidase;
D O I
暂无
中图分类号
学科分类号
摘要
Neuregulin 1 (NRG1) exhibits potent neuroprotective properties. The aim of the present study was to investigate the antioxidative effects and underlying mechanisms of NRG1 against H2O2-induced oxidative stress in primary rat cortical neurons. The expression level of the excitatory amino acid carrier 1 (EAAC1) protein was measured by Western blotting and immunocytochemistry. The levels of lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity, GPx activity, and mitochondrial membrane potential (∆ψm) were determined to examine cell death and the antioxidant properties of NRG1 in primary rat cortical neurons. H2O2 reduced the expression of EAAC1 in a dose-dependent manner. We found that pretreatment with NRG1 attenuated the H2O2-induced reduction in EAAC1 expression. Moreover, NRG1 reduced the cell death and oxidative stress induced by H2O2. In addition, NRG1 attenuated H2O2-induced reductions in antioxidant enzyme activity and ∆ψm. Our data indicate a role for NRG1 in protecting against oxidative stress via the regulation of EAAC1. These observations may provide novel insights into the mechanisms of NRG1 activity during oxidative stress and may reveal new therapeutic targets for regulating the oxidative stress associated with various neurological diseases.
引用
收藏
页码:401 / 409
页数:8
相关论文
共 50 条
  • [1] Neuregulin1 Attenuates H2O2-Induced Reductions in EAAC1 Protein Levels and Reduces H2O2-Induced Oxidative Stress
    Lee, Jun-Ho
    Yoo, Ji-Young
    Kim, Han-byeol
    Yoo, Hong-Il
    Song, Dae-Yong
    Min, Sun Seek
    Baik, Tai-Kyoung
    Woo, Ran-Sook
    NEUROTOXICITY RESEARCH, 2019, 35 (02) : 401 - 409
  • [2] Polydatin Attenuates H2O2-Induced Oxidative Stress via PKC Pathway
    Qiao, Huilian
    Chen, Hao
    Dong, Yuhang
    Ma, He
    Zhao, Guangchao
    Tang, Fakuan
    Li, Zhen
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2016, 2016
  • [3] Mechanisms of H2O2-induced oxidative stress in endothelial cells
    Coyle, Christian H.
    Martinez, Luis J.
    Coleman, Mitchell C.
    Spitz, Douglas R.
    Weintraub, Neal L.
    Kader, Khalid N.
    FREE RADICAL BIOLOGY AND MEDICINE, 2006, 40 (12) : 2206 - 2213
  • [4] Synephrine Inhibits Oxidative Stress and H2O2-Induced Premature Senescence
    Abe, Hiroshi
    Indo, Hiroko P.
    Ito, Hiromu
    Majima, Hideyuki J.
    Tanaka, Tatsuro
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2025,
  • [5] Comparative Response of Marine Microalgae to H2O2-Induced Oxidative Stress
    Maria Elena Barone
    Rachel Parkes
    Helen Herbert
    Adam McDonnell
    Thomas Conlon
    Anita Aranyos
    David Fierli
    Gerard T. A. Fleming
    Nicolas Touzet
    Applied Biochemistry and Biotechnology, 2021, 193 : 4052 - 4067
  • [6] Comparative Response of Marine Microalgae to H2O2-Induced Oxidative Stress
    Barone, Maria Elena
    Parkes, Rachel
    Herbert, Helen
    McDonnell, Adam
    Conlon, Thomas
    Aranyos, Anita
    Fierli, David
    Fleming, Gerard T. A.
    Touzet, Nicolas
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2021, 193 (12) : 4052 - 4067
  • [7] Apolipoprotein D protects against H2O2-induced oxidative stress
    Ghoshal, S
    Harkissoon, X
    Chandel, N
    Patel, SC
    JOURNAL OF NEUROCHEMISTRY, 2006, 96 : 77 - 77
  • [8] Quantification of intracellular calcineurin activity and H2O2-induced oxidative stress
    Reiter, TA
    Rusnak, F
    REDOX CELL BIOLOGY AND GENETICS, PT B, 2002, 353 : 70 - 81
  • [9] Apolipoprotein D protects against H2O2-induced oxidative stress
    Ghoshal, S
    Harkissoon, X
    Chandel, N
    Patel, SC
    JOURNAL OF NEUROCHEMISTRY, 2006, 96 : 112 - 112
  • [10] Sphingosine 1-phosphate attenuates H2O2-induced apoptosis in endothelial cells
    Moriue, Tetsuya
    Igarashi, Junsuke
    Yoneda, Kozo
    Nakai, Kozo
    Kosaka, Hiroaki
    Kubota, Yasuo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 368 (04) : 852 - 857