On the optimal space complexity of consensus for anonymous processes

被引:0
|
作者
Rati Gelashvili
机构
[1] MIT Computer Science and Artificial Intelligence Laboratory,
来源
Distributed Computing | 2018年 / 31卷
关键词
Consensus; Anonymous processes; Space complexity; Registers;
D O I
暂无
中图分类号
学科分类号
摘要
The optimal space complexity of consensus in asynchronous shared memory was an open problem for two decades. For a system of n processes, no algorithm using a sublinear number of registers is known. Up until very recently, the best known lower bound due to Fich, Herlihy, and Shavit was Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varOmega }(\sqrt{n})$$\end{document} registers. Fich, Herlihy, and Shavit first proved their lower bound for the special case of the problem where processes are anonymous (i.e. they run the same algorithm) and then extended it to the general case. In this paper we close the gap for the anonymous case of the problem. We show that any consensus algorithm from read–write registers for anonymous processes that satisfies nondeterministic solo termination has to use Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varOmega }(n)$$\end{document} registers in some execution. This implies an Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varOmega }(n)$$\end{document} lower bound on the space complexity of deterministic obstruction-free and randomized wait-free consensus, matching the upper bound. We introduce new techniques for marshalling anonymous processes and their executions, in particular, the concepts of leader–follower pairs and reserving executions, that play a critical role in the lower bound argument and will hopefully be more generally applicable.
引用
收藏
页码:317 / 326
页数:9
相关论文
共 50 条
  • [1] On the Optimal Space Complexity of Consensus for Anonymous Processes
    Gelashvili, Rati
    DISTRIBUTED COMPUTING (DISC 2015), 2015, 9363 : 452 - 466
  • [2] On the optimal space complexity of consensus for anonymous processes
    Gelashvili, Rati
    DISTRIBUTED COMPUTING, 2018, 31 (04) : 317 - 326
  • [3] Brief Announcement: On the Uncontended Complexity of Anonymous Consensus
    Capdevielle, Claire
    Johnen, Colette
    Kuznetsov, Petr
    Milani, Alessia
    DISTRIBUTED COMPUTING (DISC 2015), 2015, 9363 : 667 - 668
  • [4] Communication Complexity of Consensus in Anonymous Message Passing Systems
    Fusco, Emanuele G.
    Pelc, Andrzej
    PRINCIPLES OF DISTRIBUTED SYSTEMS, 2011, 7109 : 191 - +
  • [5] Communication Complexity of Consensus in Anonymous Message Passing Systems
    Fusco, Emanuele G.
    Pelc, Andrzej
    FUNDAMENTA INFORMATICAE, 2015, 137 (03) : 305 - 322
  • [6] THE SPACE COMPLEXITY OF LEADER ELECTION IN ANONYMOUS NETWORKS
    Ando, Ei
    Ono, Hirotaka
    Sadakane, Kunihiko
    Yamashita, Masafumi
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (03) : 427 - 440
  • [7] The space complexity of the leader election in anonymous networks
    Ando, Ei
    Ono, Hirotaka
    Sadakane, Kunihiko
    Yamashita, Masafumi
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 103 - 110
  • [8] The Space Complexity of Consensus from Swap
    Ovens, Sean
    PROCEEDINGS OF THE 2022 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, PODC 2022, 2022, : 176 - 186
  • [9] The Space Complexity of Consensus from Swap
    Ovens, Sean
    JOURNAL OF THE ACM, 2024, 71 (01)
  • [10] Brief Announcement: Tight Space Bounds for Memoryless Anonymous Consensus
    Zhu, Leqi
    DISTRIBUTED COMPUTING (DISC 2015), 2015, 9363 : 665 - 666