Network traffic classification based on ensemble learning and co-training

被引:0
|
作者
HaiTao He
XiaoNan Luo
FeiTeng Ma
ChunHui Che
JianMin Wang
机构
[1] Sun Yat-Sen University,School of Information Science and Technology
[2] Ministry of Education,Key Laboratory of Digital Life (Sun Yat
[3] Sun Yat-Sen University,sen University)
关键词
traffic classification; ensemble learning; co-training; network measurement;
D O I
暂无
中图分类号
学科分类号
摘要
Classification of network traffic is the essential step for many network researches. However, with the rapid evolution of Internet applications the effectiveness of the port-based or payload-based identification approaches has been greatly diminished in recent years. And many researchers begin to turn their attentions to an alternative machine learning based method. This paper presents a novel machine learning-based classification model, which combines ensemble learning paradigm with co-training techniques. Compared to previous approaches, most of which only employed single classifier, multiple classifiers and semi-supervised learning are applied in our method and it mainly helps to overcome three shortcomings: limited flow accuracy rate, weak adaptability and huge demand of labeled training set. In this paper, statistical characteristics of IP flows are extracted from the packet level traces to establish the feature set, then the classification model is created and tested and the empirical results prove its feasibility and effectiveness.
引用
收藏
页码:338 / 346
页数:8
相关论文
共 50 条
  • [1] Network traffic classification based on ensemble learning and co-training
    HE HaiTao1
    2 Key Laboratory of Digital Life (Sun Yat-sen University)
    3 Information and Network Center
    Science China(Information Sciences), 2009, (02) : 338 - 346
  • [2] Network traffic classification based on ensemble learning and co-training
    HE HaiTaoLUO XiaoNanMA FeiTengCHE ChunHui WANG JianMin School of Information Science and TechnologySun YatSen UniversityGuangzhou China Key Laboratory of Digital Life Sun Yatsen UniversityMinistry of EducationGuangzhou China Information and Network CenterSun YatSen UniversityGuangzhou China
    Science in China(Series F:Information Sciences), 2009, 52 (02) : 338 - 346
  • [3] Network traffic classification based on ensemble learning and co-training
    He HaiTao
    Luo XiaoNan
    Ma FeiTeng
    Che ChunHui
    Wang JianMin
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2009, 52 (02): : 338 - 346
  • [4] Online traffic classification based on co-training method
    Yan, Jinghua
    Yun, Xiaochun
    Wu, Zhigang
    Luo, Hao
    Zhang, Shuzhuang
    Jin, Shuyuan
    Zhang, Zhibin
    2012 13TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS, AND TECHNOLOGIES (PDCAT 2012), 2012, : 391 - 397
  • [5] Vertical Ensemble Co-Training for Text Classification
    Katz, Gilad
    Caragea, Cornelia
    Shabtai, Asaf
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (02)
  • [6] Traffic Classification Using En-semble Learning and Co-training
    He, Haitao
    Che, Chunhui
    Ma, Feiteng
    Zhang, Jun
    Luo, Xiaonan
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED INFORMATICS AND COMMUNICATIONS, PTS I AND II: NEW ASPECTS OF APPLIED INFORMATICS AND COMMUNICATIONS, 2008, : 458 - +
  • [7] A Co-Training Model Based in Learning Transfer for the Classification of Research Papers
    Cevallos-Culqui, Alex
    Pons, Claudia
    Rodríguez, Gustavo
    International IEEE Conference proceedings, IS, 2024, (2024):
  • [8] Fault Detection and Classification Based on Co-training of Semisupervised Machine Learning
    Abdelgayed, Tamer S.
    Morsi, Walid G.
    Sidhu, Tarlochan S.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (02) : 1595 - 1605
  • [9] Face recognition with co-training and ensemble-driven learning
    El Gayar, Neamat
    Shaban, Shaban A.
    Hamdy, Sayed
    WSEAS Transactions on Computers, 2007, 6 (03): : 507 - 513
  • [10] Multiclass transient event classification in hybrid distribution network based on co-training of fine KNN and ensemble KNN classifier
    Banerjee, Sannistha
    Bhowmik, Partha Sarathee
    SMART SCIENCE, 2023, 11 (04) : 744 - 758