The influence of temperature/photoperiod treatment and gibberellic acid concentration (0, 0.1 or 1.0 mg/l) on direct conversion of microspore-derived embryos (MDEs) to plantlets of winter oilseed rape was investigated. Physiologically mature, 21-day-old MDEs were transferred to a solid B5 medium supplemented with gibberellic acid, and cultured at 24 °C, 4 °C or 1 °C for 14 days, and then at 24 °C for the next 21 days. Low temperature was linked with short photoperiod (8 h light/16 h dark), and high temperature was linked with long photoperiod (16 h light/8 h dark). The highest embryo conversion rate was at 1 °C with over 70%, compared to<20% at 4 °C. Two-way analysis of variance confirmed the significance of the effect of temperature/photoperiod treatment. By contrast, gibberellic acid concentration had no significant effect on stimulation of shoot development from apical meristems of MDEs. Roots developed from apical root meristems of MDEs very easily. The best obtained conversion rate of MDEs induced with cold treatment at1 °C for 14 days was 86.5%. Observations on morphological development of MDEs showed clear differences in reaction at various temperature/photoperiod treatments.