Slice monogenic functions

被引:0
|
作者
Fabrizio Colombo
Irene Sabadini
Daniele C. Struppa
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] Chapman University,Department of Mathematics and Computer Sciences
来源
关键词
Power Series; Holomorphic Function; Accumulation Point; Regular Function; Clifford Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we offer a new definition of monogenicity for functions defined on ℝn+1 with values in the Clifford algebra ℝn following an idea inspired by the recent papers [6], [7]. This new class of monogenic functions contains the polynomials (and, more in general, power series) with coefficients in the Clifford algebra ℝn. We will prove a Cauchy integral formula as well as some of its consequences. Finally, we deal with the zeroes of some polynomials and power series.
引用
收藏
页码:385 / 403
页数:18
相关论文
共 50 条
  • [1] Slice monogenic functions
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) : 385 - 403
  • [2] Symmetries of slice monogenic functions
    Colombo, Fabrizio
    Krausshar, Rolf Soeren
    Sabadini, Irene
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (03) : 1075 - 1106
  • [3] Zeroes of slice monogenic functions
    Yang, Yan
    Qian, Tao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (11) : 1398 - 1405
  • [4] Algebraic Approach to Slice Monogenic Functions
    Cnudde, Lander
    De Bie, Hendrik
    Ren, Guangbin
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (05) : 1065 - 1087
  • [5] Algebraic Approach to Slice Monogenic Functions
    Lander Cnudde
    Hendrik De Bie
    Guangbin Ren
    Complex Analysis and Operator Theory, 2015, 9 : 1065 - 1087
  • [6] The Radon transform between monogenic and generalized slice monogenic functions
    Colombo, F.
    Lavicka, R.
    Sabadini, I.
    Soucek, V.
    MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 733 - 752
  • [7] The Radon transform between monogenic and generalized slice monogenic functions
    F. Colombo
    R. Lávička
    I. Sabadini
    V. Souček
    Mathematische Annalen, 2015, 363 : 733 - 752
  • [8] GROWTH AND DISTORTION THEOREMS FOR SLICE MONOGENIC FUNCTIONS
    Ren, Guangbin
    Wang, Xieping
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 290 (01) : 169 - 198
  • [9] GENERALIZED PARTIAL-SLICE MONOGENIC FUNCTIONS
    Xu, Zhenghua
    Sabadini, Irene
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (02) : 851 - 883
  • [10] Distributions and the Global Operator of Slice Monogenic Functions
    Colombo, Fabrizio
    Sommen, Franciscus
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1257 - 1268