We consider the two-dimensional one-component plasma (jellium) of mobile pointlike particles with the same charge e, interacting pairwisely by the logarithmic Coulomb potential and immersed in a fixed neutralizing background charge density. Particles are in thermal equilibrium at the inverse temperature β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}, the only relevant dimensionless parameter is the coupling constant Γ≡βe2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma \equiv \beta e^2$$\end{document}. In the bulk fluid regime and for any value of the coupling constant Γ=2×integer\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma =2\times \mathrm{integer}$$\end{document}, Šamaj and Percus (J Stat Phys 80:811–824, 1995) have derived an infinite sequence of sum rules for the coefficients of the short-distance expansion of particle pair correlation function. In the context of the equivalent fractional quantum Hall effect, by using specific methods of quantum geometry Haldane (Phys Rev Lett 107:116801, 2011; arXiv:1112.0990v2, 2011) derived a self-dual relation for the Landau-level guiding-center structure factor. In this paper, we establish the relation between the guiding-center structure factor and the pair correlation function of jellium particles. It is shown that the self-dual formula, which provides an exact relation between the pair correlation function and its Fourier component, comes directly from the short-distance symmetry of the bulk jellium. The short-distant symmetry of pair correlations is extended to the semi-infinite geometry of a rectilinear plain hard wall with a fixed surface charge density, constraining particles to a half-space. The symmetry is derived for the original jellium model as well as its simplified version with no background charge (charged wall surface with “counter-ions only”). The obtained results are checked at the exactly solvable free-fermion coupling Γ=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma =2$$\end{document}.