Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion

被引:2
|
作者
Huimin Liu
Dongfen Bian
Xueke Pu
机构
[1] Chongqing University,College of Mathematics and Statistics
[2] Beijing Institute of Technology,School of Mathematics and Statistics
[3] Brown University,Division of Applied Mathematics
[4] Chongqing University,Department of Mathematics
关键词
Global well-posedness; 3D Boussinesq-MHD system; Strong and smooth solution; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show the global existence and uniqueness of strong and smooth large solutions to the 3D Boussinesq-MHD system without heat diffusion. Since the temperature satisfies a transport equation, in order to get high regularity of temperature, we need to use the combination of estimates about velocity and magnetic field. Moreover, our system involves a nonlinear damping term in the momentum equations due to the Brinkman–Forchheimer–extended-Darcy law of flow in porous media.
引用
收藏
相关论文
共 50 条
  • [1] Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion
    Liu, Huimin
    Bian, Dongfen
    Pu, Xueke
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (03):
  • [2] Well-posedness of the 3D Boussinesq-MHD equations with partial viscosity and damping
    Liu, Hui
    Deng, Haiyun
    Lin, Lin
    Sun, Chengfeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
  • [3] On the global well-posedness and striated regularity of the 2D Boussinesq-MHD system
    Niu, Dongjuan
    Peng, Jiao
    Wang, Lu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2572 - 2595
  • [4] Global Well-Posedness of 3d Axisymmetric MHD-Boussinesq System with Nonzero Swirl
    Liu, Qiao
    Yang, Yixin
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [5] Global Well-Posedness of 3d Axisymmetric MHD-Boussinesq System with Nonzero Swirl
    Qiao Liu
    Yixin Yang
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [6] Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion
    Larios, Adam
    Lunasin, Evelyn
    Titi, Edriss S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (09) : 2636 - 2654
  • [7] Global Well-Posedness and Asymptotic Behavior of the 3D MHD-Boussinesq Equations
    Zhengguang Guo
    Zunzun Zhang
    Zdenĕk Skalák
    Journal of Nonlinear Science, 2023, 33
  • [8] Global Well-Posedness and Asymptotic Behavior of the 3D MHD-Boussinesq Equations
    Guo, Zhengguang
    Zhang, Zunzun
    Skalak, Zdenek
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (04)
  • [9] GLOBAL WELL-POSEDNESS OF THE 3D GENERALIZED BOUSSINESQ EQUATIONS
    Xu, Bo
    Zhou, Jiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (12): : 4821 - 4829
  • [10] Global well-posedness of mild solution to the 3D Boussinesq system with damping
    Yang, Jiaqi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (01)