Critical Point Theory for the Lorentz Force Equation

被引:0
|
作者
David Arcoya
Cristian Bereanu
Pedro J. Torres
机构
[1] Universidad de Granada,Departamento de Análisis Matemático
[2] University of Bucharest,Institute of Mathematics “Simion Stoilow”
[3] Faculty of Mathematics,Departamento de Matemática Aplicada
[4] Romanian Academy,undefined
[5] Universidad de Granada,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence and multiplicity of solutions of the Lorentz force equation q′1-|q′|2′=E(t,q)+q′×B(t,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\frac{q'}{\sqrt{1-|q'|^2}}\right)'=E(t,q) + q'\times B(t,q)$$\end{document}with periodic or Dirichlet boundary conditions. In Special Relativity, this equation models the motion of a slowly accelerated electron under the influence of an electric field E and a magnetic field B. We provide a rigourous critical point theory by showing that the solutions are the critical points in the Szulkin’s sense of the corresponding Poincaré non-smooth Lagrangian action. By using a novel minimax principle, we prove a variety of existence and multiplicity results. Based on the associated Planck relativistic Hamiltonian, an alternative result is proved for the periodic case by means of a minimax theorem for strongly indefinite functionals due to Felmer.
引用
收藏
页码:1685 / 1724
页数:39
相关论文
共 50 条
  • [1] Critical Point Theory for the Lorentz Force Equation
    Arcoya, David
    Bereanu, Cristian
    Torres, Pedro J.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (03) : 1685 - 1724
  • [2] ON VALIDITY OF LORENTZ-LORENZ EQUATION NEAR CRITICAL POINT
    LARSEN, SY
    MOUNTAIN, RD
    ZWANZIG, R
    JOURNAL OF CHEMICAL PHYSICS, 1965, 42 (06): : 2187 - &
  • [3] Lusternik–Schnirelman theory for the action integral of the Lorentz force equation
    David Arcoya
    Cristian Bereanu
    Pedro J. Torres
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [4] Maslov index and Morse theory for the relativistic Lorentz force equation
    Erasmo Caponio
    Antonio Masiello
    Paolo Piccione
    manuscripta mathematica, 2004, 113 : 471 - 506
  • [5] Maslov index and Morse theory for the relativistic Lorentz force equation
    Caponio, E
    Masiello, A
    Piccione, P
    MANUSCRIPTA MATHEMATICA, 2004, 113 (04) : 471 - 506
  • [6] Interactions in the Lorentz force equation
    Bereanu, Cristian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (02)
  • [7] Interactions in the Lorentz force equation
    Cristian Bereanu
    Calculus of Variations and Partial Differential Equations, 2024, 63
  • [8] Lusternik-Schnirelman theory for the action integral of the Lorentz force equation
    Arcoya, David
    Bereanu, Cristian
    Torres, Pedro J.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [9] Theory of the Lorentz force flowmeter
    Thess, Andre
    Votyakov, Evgeny
    Knaepen, Bernard
    Zikanov, Oleg
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [10] LORENTZ FORCE IN GRAVITATION THEORY
    HAFNER, H
    REVUE ROUMAINE DE PHYSIQUE, 1971, 16 (04): : 479 - &