Quasifree Stochastic Cocycles and Quantum Random Walks

被引:0
|
作者
Alexander C. R. Belton
Michał Gnacik
J. Martin Lindsay
Ping Zhong
机构
[1] Lancaster University,Department of Mathematics and Statistics
[2] Lion Terrace,School of Mathematics and Physics, Lion Gate Building
[3] University of Portsmouth,Department of Mathematics and Statistics
[4] University of Wyoming,undefined
[5] Dept. 3036,undefined
来源
Journal of Statistical Physics | 2019年 / 176卷
关键词
Quantum stochastic calculus; Quasifree representation; Heat bath; Repeated quantum interactions; Noncommutative Markov chain; Quantum Langevin equation; Primary: 81S25; Secondary: 46L53; 46N50; 60F17; 82C10;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of quasifree quantum stochastic calculus for infinite-dimensional noise is developed within the framework of Hudson–Parthasarathy quantum stochastic calculus. The question of uniqueness for the covariance amplitude with respect to which a given unitary quantum stochastic cocycle is quasifree is addressed, and related to the minimality of the corresponding stochastic dilation. The theory is applied to the identification of a wide class of quantum random walks whose limit processes are driven by quasifree noises.
引用
收藏
页码:1 / 39
页数:38
相关论文
共 50 条
  • [1] Quasifree Stochastic Cocycles and Quantum Random Walks
    Belton, Alexander C. R.
    Gnacik, Michal
    Lindsay, J. Martin
    Zhong, Ping
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (01) : 1 - 39
  • [2] Quantum stochastic walks: A generalization of classical random walks and quantum walks
    Whitfield, James D.
    Rodriguez-Rosario, Cesar A.
    Aspuru-Guzik, Alan
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [3] RANDOM-WALKS ON COMPACT GROUPS AND EXISTENCE OF COCYCLES
    ZIMMER, RJ
    ISRAEL JOURNAL OF MATHEMATICS, 1977, 26 (01) : 84 - 90
  • [4] Quantum stochastic convolution cocycles II
    Lindsay, J. Martin
    Skalski, Adam G.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (03) : 575 - 610
  • [5] Quantum stochastic convolution cocycles I
    Lindsay, JM
    Skalski, AG
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03): : 581 - 604
  • [6] Quantum Stochastic Convolution Cocycles II
    J. Martin Lindsay
    Adam G. Skalski
    Communications in Mathematical Physics, 2008, 280 : 575 - 610
  • [7] Quantum stochastic convolution cocycles III
    J. Martin Lindsay
    Adam G. Skalski
    Mathematische Annalen, 2012, 352 : 779 - 804
  • [8] STOCHASTIC COCYCLES AS A CHARACTERIZATION OF QUANTUM FLOWS
    BRADSHAW, WS
    BULLETIN DES SCIENCES MATHEMATIQUES, 1992, 116 (01): : 1 - 34
  • [9] Quantum stochastic convolution cocycles III
    Lindsay, J. Martin
    Skalski, Adam G.
    MATHEMATISCHE ANNALEN, 2012, 352 (04) : 779 - 804
  • [10] A Crossover Between Open Quantum Random Walks to Quantum Walks
    Norio Konno
    Kaname Matsue
    Etsuo Segawa
    Journal of Statistical Physics, 190