Optimality Conditions in Differentiable Vector Optimization via Second-Order Tangent Sets

被引:0
|
作者
Bienvenido Jiménez
Vicente Novo
机构
[1] Departamento de Economía e Historia Económica,
[2] Facultad de Economía y Empresa,undefined
[3] Universidad de Salamanca,undefined
[4] Campus Miguel de Unamuno,undefined
[5] s/n,undefined
[6] 37007 Salamanca,undefined
[7] Departamento de Matemática Aplicada,undefined
[8] E.T.S.I. Industriales,undefined
[9] UNED,undefined
[10] c/ Juan del Rosal 12,undefined
[11] Apartado 60149,undefined
[12] 28080 Madrid,undefined
来源
关键词
Vector optimization; Second-order optimality conditions for efficiency; Second-order tangent set; Asymptotic second-order cone; Projective tangent set; Lagrange multipliers; Strict efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Fréchet differentiable objective function between two normed spaces. We also establish second-order sufficient conditions when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given.
引用
收藏
页码:123 / 144
页数:21
相关论文
共 50 条
  • [1] Optimality conditions in differentiable vector optimization via second-order tangent sets
    Bienvenido Jiménez
    Vicente Novo
    [J]. Applied Mathematics and Optimization, 2004, 49 (2): : 123 - 144
  • [2] Optimality conditions in differentiable vector optimization via second-order tangent sets
    Jiménez, B
    Novo, V
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 49 (02): : 123 - 144
  • [3] On second-order optimality conditions for continuously Frechet differentiable vector optimization problems
    Feng, Min
    Li, Shengjie
    [J]. OPTIMIZATION, 2018, 67 (12) : 2117 - 2137
  • [4] On Second-Order Optimality Conditions for Vector Optimization
    María C. Maciel
    Sandra A. Santos
    Graciela N. Sottosanto
    [J]. Journal of Optimization Theory and Applications, 2011, 149 : 332 - 351
  • [5] On Second-Order Optimality Conditions for Vector Optimization
    Maciel, Maria C.
    Santos, Sandra A.
    Sottosanto, Graciela N.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (02) : 332 - 351
  • [6] On Second-Order Optimality Conditions for Vector Optimization: Addendum
    María C. Maciel
    Sandra A. Santos
    Graciela N. Sottosanto
    [J]. Journal of Optimization Theory and Applications, 2021, 188 : 597 - 602
  • [7] On Second-Order Optimality Conditions for Vector Optimization: Addendum
    Maciel, Maria C.
    Santos, Sandra A.
    Sottosanto, Graciela N.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (02) : 597 - 602
  • [8] New Second-Order Optimality Conditions for a Class of Differentiable Optimization Problems
    Nguyen Quang Huy
    Nguyen Van Tuyen
    [J]. Journal of Optimization Theory and Applications, 2016, 171 : 27 - 44
  • [9] New Second-Order Optimality Conditions for a Class of Differentiable Optimization Problems
    Nguyen Quang Huy
    Nguyen Van Tuyen
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (01) : 27 - 44
  • [10] New second-order optimality conditions in multiobjective optimization problems: Differentiable case
    Research Centre for Mathematical and Physical Sciences , University of Chittagong, Chittagong 4331, Bangladesh
    不详
    不详
    [J]. J Indian Inst Sci, 2006, 3 (279-286):