Evaluation of gravitational curvatures of a tesseroid in spherical integral kernels

被引:0
|
作者
Xiao-Le Deng
Wen-Bin Shen
机构
[1] Wuhan University,School of Geodesy and Geomatics
[2] Wuhan University,State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing
来源
Journal of Geodesy | 2018年 / 92卷
关键词
Tesseroid; Gravitational curvatures; Gravitational effects; Gravity tensors; Gravity gradiometry;
D O I
暂无
中图分类号
学科分类号
摘要
Proper understanding of how the Earth’s mass distributions and redistributions influence the Earth’s gravity field-related functionals is crucial for numerous applications in geodesy, geophysics and related geosciences. Calculations of the gravitational curvatures (GC) have been proposed in geodesy in recent years. In view of future satellite missions, the sixth-order developments of the gradients are becoming requisite. In this paper, a set of 3D integral GC formulas of a tesseroid mass body have been provided by spherical integral kernels in the spatial domain. Based on the Taylor series expansion approach, the numerical expressions of the 3D GC formulas are provided up to sixth order. Moreover, numerical experiments demonstrate the correctness of the 3D Taylor series approach for the GC formulas with order as high as sixth order. Analogous to other gravitational effects (e.g., gravitational potential, gravity vector, gravity gradient tensor), numerically it is found that there exist the very-near-area problem and polar singularity problem in the GC east–east–radial, north–north–radial and radial–radial–radial components in spatial domain, and compared to the other gravitational effects, the relative approximation errors of the GC components are larger due to not only the influence of the geocentric distance but also the influence of the latitude. This study shows that the magnitude of each term for the nonzero GC functionals by a grid resolution 15′×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\prime } }\,\times $$\end{document} 15′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\prime }}$$\end{document} at GOCE satellite height can reach of about 10-16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-16}$$\end{document} m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} s2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} for zero order, 10-24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-24 }$$\end{document} or 10-23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-23}$$\end{document} m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} s2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} for second order, 10-29\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-29}$$\end{document} m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} s2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} for fourth order and 10-35\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-35}$$\end{document} or 10-34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-34}$$\end{document} m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} s2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} for sixth order, respectively.
引用
收藏
页码:415 / 429
页数:14
相关论文
共 50 条
  • [1] Evaluation of gravitational curvatures of a tesseroid in spherical integral kernels
    Deng, Xiao-Le
    Shen, Wen-Bin
    JOURNAL OF GEODESY, 2018, 92 (04) : 415 - 429
  • [2] Evaluation of gravitational curvatures for a tesseroid and spherical shell with arbitrary-order polynomial density
    Deng, Xiao-Le
    JOURNAL OF GEODESY, 2023, 97 (02)
  • [3] Evaluation of gravitational curvatures for a tesseroid and spherical shell with arbitrary-order polynomial density
    Xiao-Le Deng
    Journal of Geodesy, 2023, 97
  • [4] Evaluation of Optimal Formulas for Gravitational Tensors up to Gravitational Curvatures of a Tesseroid
    Deng, Xiao-Le
    Shen, Wen-Bin
    SURVEYS IN GEOPHYSICS, 2018, 39 (03) : 365 - 399
  • [5] Evaluation of Optimal Formulas for Gravitational Tensors up to Gravitational Curvatures of a Tesseroid
    Xiao-Le Deng
    Wen-Bin Shen
    Surveys in Geophysics, 2018, 39 : 365 - 399
  • [6] Magnetic Curvatures of a Uniformly Magnetized Tesseroid Using the Cartesian Kernels
    Deng, Xiao-Le
    Shen, Wen-Bin
    Kuhn, Michael
    Hirt, Christian
    Pail, Roland
    SURVEYS IN GEOPHYSICS, 2020, 41 (05) : 1075 - 1099
  • [7] Magnetic Curvatures of a Uniformly Magnetized Tesseroid Using the Cartesian Kernels
    Xiao-Le Deng
    Wen-Bin Shen
    Michael Kuhn
    Christian Hirt
    Roland Pail
    Surveys in Geophysics, 2020, 41 : 1075 - 1099
  • [8] A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band
    Marotta, Anna Maria
    Barzaghi, Riccardo
    JOURNAL OF GEODESY, 2017, 91 (10) : 1207 - 1224
  • [9] Coseismic gravitational curvatures changes in a spherical symmetric Earth model
    Ji, Yuting
    Tenzer, Robert
    Tang, He
    Sun, Wenke
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2023, 338
  • [10] A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band
    Anna Maria Marotta
    Riccardo Barzaghi
    Journal of Geodesy, 2017, 91 : 1207 - 1224