What is -Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-Q$$\end{document} for a poset Q?

被引:0
|
作者
Taiga Yoshida
Masahiko Yoshinaga
机构
[1] Hokkaido University,Department of Mathematics, Graduate School of Science
[2] Osaka University,Department of Mathematics, Graduate School of Science
关键词
Posets; Order polynomial; Combinatorial reciprocity;
D O I
10.1007/s11083-022-09600-y
中图分类号
学科分类号
摘要
In the context of combinatorial reciprocity, it is a natural question to ask what “-Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-Q$$\end{document}” is for a poset Q. In a previous work, the definition “-Q:=Q×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-Q:=Q\times \mathbb {R}$$\end{document} with lexicographic order” was proposed based on the notion of Euler characteristic of semialgebraic sets. In fact, by using this definition, Stanley’s reciprocity for order polynomials was generalized to an equality for the Euler characteristics of certain spaces of increasing maps between posets. The purpose of this paper is to refine this result, that is, to show that these spaces are homeomorphic if the topology of Q is metrizable.
引用
收藏
页码:149 / 155
页数:6
相关论文
共 50 条