Cancellative conjugation semigroups and monoids

被引:0
|
作者
A. P. Garrão
N. Martins-Ferreira
M. Raposo
M. Sobral
机构
[1] Universidade dos Açores,Faculdade de Ciências e Tecnologia
[2] Instituto Politécnico de Leiria,CMUC and Departamento de Matemática
[3] University of Coimbra,undefined
来源
Semigroup Forum | 2020年 / 100卷
关键词
Admissibility diagrams; Weakly Mal’tsev category; Conjugation semigroups; Internal monoid; Internal groupoid;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h:X→B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h:X\rightarrow B$$\end{document} which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions.
引用
收藏
页码:806 / 836
页数:30
相关论文
共 50 条