Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr)

被引:0
|
作者
Hussein Abdel-Haleem
Thomas E. Carter
Larry C. Purcell
C. Andy King
Landon L. Ries
Pengyin Chen
William Schapaugh
Thomas R. Sinclair
H. Roger Boerma
机构
[1] University of Georgia,Institute for Plant Breeding, Genetics and Genomics, Center for Applied Genetic Technologies
[2] USDA-ARS at North Carolina State University,Department of Crops, Soils, and Environmental Sciences
[3] University of Arkansas,Department of Agronomy and Plant Genetics
[4] University of Minnesota,Department of Crops, Soils, and Environmental Sciences
[5] University of Arkansas,Department of Agronomy
[6] Kansas State University,undefined
来源
关键词
Quantitative Trait Locus; Vapor Pressure Deficit; Quantitative Trait Locus Analysis; Daidzein; Plant Introduction;
D O I
暂无
中图分类号
学科分类号
摘要
Drought stress adversely affects [Glycine max (L.) Merr] soybean at most developmental stages, which collectively results in yield reduction. Little information is available on relative contribution and chromosomal locations of quantitative trait loci (QTL) conditioning drought tolerance in soybean. A Japanese germplasm accession, PI 416937, was found to possess drought resistance. Under moisture-deficit conditions, PI 416937 wilted more slowly in the field than elite cultivars and has been used as a parent in breeding programs to improve soybean productivity. A recombinant inbred line (RIL) population was derived from a cross between PI 416937 and Benning, and the population was phenotyped for canopy wilting under rain-fed field conditions in five distinct environments to identify the QTL associated with the canopy-wilting trait. In a combined analysis over environments, seven QTL that explained 75 % of the variation in canopy-wilting trait were identified on different chromosomes, implying the complexity of this trait. Five QTL inherited their positive alleles from PI 416937. Surprisingly, the other two QTL inherited their positive alleles from Benning. These putative QTL were co-localized with other QTL previously identified as related to plant abiotic stresses in soybean, suggesting that canopy-wilting QTL may be associated with additional morpho-physiological traits in soybean. A locus on chromosome 12 (Gm12) from PI 416937 was detected in the combined analysis as well as in each individual environment, and explained 27 % of the variation in canopy-wilting. QTL identified in PI 416937 could provide an efficient means to augment field-oriented development of drought-tolerant soybean cultivars.
引用
收藏
页码:837 / 846
页数:9
相关论文
共 50 条
  • [1] Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr)
    Abdel-Haleem, Hussein
    Carter, Thomas E., Jr.
    Purcell, Larry C.
    King, C. Andy
    Ries, Landon L.
    Chen, Pengyin
    Schapaugh, William, Jr.
    Sinclair, Thomas R.
    Boerma, H. Roger
    THEORETICAL AND APPLIED GENETICS, 2012, 125 (05) : 837 - 846
  • [2] Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.)
    Yu Xu
    He-Nan Li
    Guang-Jun Li
    Xia Wang
    Li-Guo Cheng
    Yuan-Ming Zhang
    Theoretical and Applied Genetics, 2011, 122 : 581 - 594
  • [3] Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.)
    Xu, Yu
    Li, He-Nan
    Li, Guang-Jun
    Wang, Xia
    Cheng, Li-Guo
    Zhang, Yuan-Ming
    THEORETICAL AND APPLIED GENETICS, 2011, 122 (03) : 581 - 594
  • [4] Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.)
    Zhitong Yin
    Fanfan Meng
    Haina Song
    Xiaohong He
    Xiaoming Xu
    Deyue Yu
    Planta, 2010, 231 : 875 - 885
  • [5] Quantitative Trait Loci (QTL) Mapping for Glycinin and β-Conglycinin Contents in Soybean (Glycine max L. Merr.)
    Ma, Yujie
    Kan, Guizhen
    Zhang, Xinnan
    Wang, Yongli
    Zhang, Wei
    Du, Hongyang
    Yu, Deyue
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2016, 64 (17) : 3473 - 3483
  • [6] Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.)
    Yin, Zhitong
    Meng, Fanfan
    Song, Haina
    He, Xiaohong
    Xu, Xiaoming
    Yu, Deyue
    PLANTA, 2010, 231 (04) : 875 - 885
  • [7] Quantitative trait loci analysis for the developmental behavior of Soybean (Glycine max L. Merr.)
    Sun, DH
    Li, WB
    Zhang, ZC
    Chen, QS
    Ning, HL
    Qiu, LJ
    Sun, GL
    THEORETICAL AND APPLIED GENETICS, 2006, 112 (04) : 665 - 673
  • [8] Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.)
    Loc Van Nguyen
    Takahashi, Ryoji
    Githiri, Stephen Mwangi
    Rodriguez, Tito O.
    Tsutsumi, Nobuko
    Kajihara, Sayuri
    Sayama, Takasi
    Ishimoto, Masao
    Harada, Kyuya
    Suematsu, Keisuke
    Abiko, Tomomi
    Mochizuki, Toshihiro
    THEORETICAL AND APPLIED GENETICS, 2017, 130 (04) : 743 - 755
  • [9] Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.)
    Loc Van Nguyen
    Ryoji Takahashi
    Stephen Mwangi Githiri
    Tito O. Rodriguez
    Nobuko Tsutsumi
    Sayuri Kajihara
    Takasi Sayama
    Masao Ishimoto
    Kyuya Harada
    Keisuke Suematsu
    Tomomi Abiko
    Toshihiro Mochizuki
    Theoretical and Applied Genetics, 2017, 130 : 743 - 755
  • [10] Mapping of quantitative trait loci and mining of candidate genes for seed viability in soybean [Glycine max (L.) Merr.]
    Saini, Manisha
    Yadav, Raju R.
    Kumar, Rahul
    Chandra, Subhash
    Rathod, N. Krishna Kumar
    Taku, Meniari
    Yadav, Manu
    Basu, Sudipta
    Rajendran, Ambika
    Lal, S. K.
    Talukdar, Akshay
    FRONTIERS IN PLANT SCIENCE, 2025, 15