Sequence-based feature prediction and annotation of proteins

被引:0
|
作者
Agnieszka S Juncker
Lars J Jensen
Andrea Pierleoni
Andreas Bernsel
Michael L Tress
Peer Bork
Gunnar von Heijne
Alfonso Valencia
Christos A Ouzounis
Rita Casadio
Søren Brunak
机构
[1] Technical University of Denmark,Center for Biological Sequence Analysis, Department of Systems Biology
[2] European Molecular Biology Laboratory,Center for Biomembrane Research and Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics
[3] University of Bologna,KCL Centre for Bioinformatics
[4] Biocomputing Group,undefined
[5] Stockholm University,undefined
[6] Structural Biology and Biocomputing Programme,undefined
[7] Spanish National Cancer Research Centre (CNIO),undefined
[8] School of Physical Sciences and Engineering,undefined
[9] King's College London,undefined
来源
关键词
Gene Ontology; Additional Data File; Linear Motif; Membrane Protein Structure; Computational Annotation;
D O I
暂无
中图分类号
学科分类号
摘要
A recent trend in computational methods for annotation of protein function is that many prediction tools are combined in complex workflows and pipelines to facilitate the analysis of feature combinations, for example, the entire repertoire of kinase-binding motifs in the human proteome.
引用
收藏
相关论文
共 50 条
  • [1] Sequence-based feature prediction and annotation of proteins
    Juncker, Agnieszka S.
    Jensen, Lars J.
    Pierleoni, Andrea
    Bernsel, Andreas
    Tress, Michael L.
    Bork, Peer
    von Heijne, Gunnar
    Valencia, Alfonso
    Ouzounis, Christos A.
    Casadio, Rita
    Brunak, Soren
    [J]. GENOME BIOLOGY, 2009, 10 (02): : 206
  • [2] Sequence-Based Prediction of Metamorphic Behavior in Proteins
    Chen, Nanhao
    Das, Madhurima
    LiWang, Andy
    Wang, Lee-Ping
    [J]. BIOPHYSICAL JOURNAL, 2020, 119 (07) : 1380 - 1390
  • [3] Sequence-Based Prediction with Feature Representation Learning and Biological Function Analysis of Channel Proteins
    Chen, Zheng
    Jiao, Shihu
    Zhao, Da
    Hesham, Abd El-Latif
    Zou, Quan
    Xu, Lei
    Sun, Mingai
    Zhang, Lijun
    [J]. FRONTIERS IN BIOSCIENCE-LANDMARK, 2022, 27 (06):
  • [4] ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning
    Jiao, Shihu
    Chen, Zheng
    Zhang, Lichao
    Zhou, Xun
    Shi, Lei
    [J]. AMINO ACIDS, 2022, 54 (05) : 799 - 809
  • [5] ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning
    Shihu Jiao
    Zheng Chen
    Lichao Zhang
    Xun Zhou
    Lei Shi
    [J]. Amino Acids, 2022, 54 : 799 - 809
  • [6] Sequence-Based Prediction of Type III Secreted Proteins
    Arnold, Roland
    Brandmaier, Stefan
    Kleine, Frederick
    Tischler, Patrick
    Heinz, Eva
    Behrens, Sebastian
    Niinikoski, Antti
    Mewes, Hans-Werner
    Horn, Matthias
    Rattei, Thomas
    [J]. PLOS PATHOGENS, 2009, 5 (04)
  • [7] ThermoFinder: A sequence-based thermophilic proteins prediction framework
    Yu, Han
    Luo, Xiaozhou
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 270
  • [8] Exploring the Sequence-based Prediction of Folding Initiation Sites in Proteins
    Daniele Raimondi
    Gabriele Orlando
    Rita Pancsa
    Taushif Khan
    Wim F. Vranken
    [J]. Scientific Reports, 7
  • [9] Exploring the Sequence-based Prediction of Folding Initiation Sites in Proteins
    Raimondi, Daniele
    Orlando, Gabriele
    Pancsa, Rita
    Khan, Taushif
    Vranken, Wim F.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] A Novel Sequence-Based Method for Phosphorylation Site Prediction with Feature Selection and Analysis
    He, Zhi-Song
    Shi, Xiao-He
    Kong, Xiang-Ying
    Zhu, Yu-Bei
    Chou, Kuo-Chen
    [J]. PROTEIN AND PEPTIDE LETTERS, 2012, 19 (01): : 70 - 78