High temperature applications of new class of iron-based filler metals provide brazements with high corrosion resistance and mechanical properties. These brazements are cost-effective alternative to those made of the conventional brazing alloys. However, a wiser usage demands a deeper understanding of the wetting as well as gap filling behavior in conjunction with the resulting microstructure, which is mainly influenced by the applied brazing cycles. Therefore, this paper presents results of the investigation of specific brazing fundamentals for the new iron-based brazing alloy Fe-24Cr-20Ni-10Cu-7P-5Mn-5Si. Followed by DTA/DSC measurements, the spreading and gap filling behavior were examined by using stainless steel AISI 304 as base material. In wetting tests and wedge-gap experiments, the influence of the applied brazing temperature and the dwell time were investigated for vacuum brazing processes. The resulting microstructure was evaluated using a scanning electron microscope (SEM), equipped with an energy dispersive X-ray spectroscopy (EDS). Finally, strength tests were conducted in order to determine the influence of the brazing parameters on the mechanical properties of the joint.