Optimal Encodings for Range Majority Queries

被引:0
|
作者
Gonzalo Navarro
Sharma V. Thankachan
机构
[1] University of Chile,Department of Computer Science
[2] Georgia Institute of Technology,undefined
来源
Algorithmica | 2016年 / 74卷
关键词
Range majority queries; Encoding data structures; Succinct data structures;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of designing a data structure that reports the positions of the distinct τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-majorities within any range of an array A[1,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A[1,n]$$\end{document}, without storing A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}. A τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-majority in a range A[i,j]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A[i,j]$$\end{document}, for 0<τ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\tau < 1$$\end{document}, is an element that occurs more than τ(j-i+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (j-i+1)$$\end{document} times in A[i,j]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A[i,j]$$\end{document}. We show that Ω(n⌈log(1/τ)⌉)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n\lceil \log (1/\tau )\rceil )$$\end{document} bits are necessary for any data structure just able to count the number of distinct τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-majorities in any range. Then, we design a structure using O(n⌈log(1/τ)⌉)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\lceil \log (1/\tau )\rceil )$$\end{document} bits that returns one position of each τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-majority of A[i,j]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A[i,j]$$\end{document} in O((1/τ)loglogw(1/τ)logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((1/\tau )\log \log _w(1/\tau )\log n)$$\end{document} time, on a RAM machine with word size w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w$$\end{document} (it can output any further position where each τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-majority occurs in O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1)$$\end{document} additional time). Finally, we show how to remove a logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log n$$\end{document} factor from the time by adding O(nloglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log \log n)$$\end{document} bits of space to the structure.
引用
收藏
页码:1082 / 1098
页数:16
相关论文
共 50 条
  • [1] Optimal Encodings for Range Majority Queries
    Navarro, Gonzalo
    Thankachan, Sharma V.
    [J]. ALGORITHMICA, 2016, 74 (03) : 1082 - 1098
  • [2] Encodings for Range Majority Queries
    Navarro, Gonzalo
    Thankachan, Sharma V.
    [J]. COMBINATORIAL PATTERN MATCHING, CPM 2014, 2014, 8486 : 262 - 272
  • [3] Asymptotically Optimal Encodings of Range Data Structures for Selection and Top-k Queries
    Grossi, Roberto
    Iacono, John
    Navarro, Gonzalo
    Raman, Rajeev
    Satti, S. Rao
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2017, 13 (02)
  • [4] Encodings for Range Selection and Top-k Queries
    Grossi, Roberto
    Iacono, John
    Navarro, Gonzalo
    Raman, Rajeev
    Rao, Satti Srinivasa
    [J]. ALGORITHMS - ESA 2013, 2013, 8125 : 553 - 564
  • [5] Simultaneous encodings for range and next/previous larger/smaller value queries
    Jo, Seungbum
    Satti, Srinivasa Rao
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 654 : 80 - 91
  • [6] Simultaneous Encodings for Range and Next/Previous Larger/Smaller Value Queries
    Jo, Seungbum
    Satti, Srinivasa Rao
    [J]. COMPUTING AND COMBINATORICS, 2015, 9198 : 648 - 660
  • [7] Optimal Succinctness for Range Minimum Queries
    Fischer, Johannes
    [J]. LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 158 - 169
  • [8] Queries on LZ-Bounded Encodings
    Belazzougui, Djamal
    Gagie, Travis
    Gawrychowski, Pawel
    Karkkainen, Juha
    Ordonez, Alberto
    Puglisi, Simon J.
    Tabei, Yasuo
    [J]. 2015 DATA COMPRESSION CONFERENCE (DCC), 2015, : 83 - 92
  • [9] Optimal Query Time for Encoding Range Majority
    Gawrychowski, Pawel
    Nicholson, Patrick K.
    [J]. ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 409 - 420
  • [10] OPTIMAL DYNAMIC MULTIATTRIBUTE HASHING FOR RANGE QUERIES
    HARRIS, EP
    RAMAMOHANARAO, K
    [J]. BIT, 1993, 33 (04): : 561 - 579