Operator splitting for dissipative delay equations

被引:0
|
作者
András Bátkai
Petra Csomós
Bálint Farkas
机构
[1] Eötvös Loránd University,Institute of Mathematics
[2] Bergische Universität Wuppertal,School of Mathematics and Natural Sciences
[3] Hungarian Academy of Sciences,MTA
来源
Semigroup Forum | 2017年 / 95卷
关键词
Lie–Trotter product formula; Operator splitting; Order of convergence; -semigroups; Delay equation;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate Lie–Trotter product formulae for abstract nonlinear evolution equations with delay. Using results from the theory of nonlinear contraction semigroups in Hilbert spaces, we explain the convergence of the splitting procedure. The order of convergence is also investigated in detail, and some numerical illustrations are presented.
引用
收藏
页码:345 / 365
页数:20
相关论文
共 50 条
  • [1] Operator splitting for dissipative delay equations
    Batkai, Andras
    Csomos, Petra
    Farkas, Balint
    SEMIGROUP FORUM, 2017, 95 (02) : 345 - 365
  • [2] Operator splitting for delay equations
    Csomos, Petra
    Nickel, Gregor
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2234 - 2246
  • [3] Operator splitting for nonautonomous delay equations
    Batkai, Andras
    Csomos, Petra
    Farkas, Balint
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (03) : 315 - 324
  • [4] Splitting of Operators and Operator Equations
    Chun Yuan Deng
    Wan Yu Zhang
    Acta Mathematica Sinica, English Series, 2023, 39 : 1085 - 1100
  • [5] Splitting of Operators and Operator Equations
    Chun Yuan DENG
    Wan Yu ZHANG
    ActaMathematicaSinica,EnglishSeries, 2023, (06) : 1085 - 1100
  • [6] Splitting of Operators and Operator Equations
    Deng, Chun Yuan
    Zhang, Wan Yu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (06) : 1085 - 1100
  • [7] Unitary integration with operator splitting for weakly dissipative systems
    Shadwick, BA
    Buell, WF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (22): : 4771 - 4781
  • [8] Corrected operator splitting for nonlinear parabolic equations
    Karlsen, KH
    Risebro, NH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 980 - 1003
  • [9] Exact solutions of differential equations with delay for dissipative systems
    Hasebe, K
    Nakayama, A
    Sugiyama, Y
    PHYSICS LETTERS A, 1999, 259 (02) : 135 - 139
  • [10] Exact solutions of differential equations with delay for dissipative systems
    Hasebe, K.
    Nakayama, A.
    Sugiyama, Y.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259 (02): : 135 - 139