Algebraically closed and existentially closed Abelian lattice-ordered groups

被引:0
|
作者
Philip Scowcroft
机构
[1] Wesleyan University,Department of Mathematics and Computer Science
来源
Algebra universalis | 2016年 / 75卷
关键词
lattice-ordered group; algebraically closed; existentially closed; finitely generic; infinitely generic; Primary: 03C60; Secondary: 06F20; 03C25;
D O I
暂无
中图分类号
学科分类号
摘要
If G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} is an Abelian lattice-ordered (l-) group, then G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} is algebraically (existentially) closed just in case every finite system of l-group equations (equations and inequations), involving elements of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document}, that is solvable in some Abelian l-group extending G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} is solvable already in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document}. This paper establishes two systems of axioms for algebraically (existentially) closed Abelian l-groups, one more convenient for modeltheoretic applications and the other, discovered by Weispfenning, more convenient for algebraic applications. Among the model-theoretic applications are quantifierelimination results for various kinds of existential formulas, a new proof of the amalgamation property for Abelian l-groups, Nullstellensätze in Abelian l-groups, and the display of continuum-many elementary-equivalence classes of existentially closed Archimedean l-groups. The algebraic applications include demonstrations that the class of algebraically closed Abelian l-groups is a torsion class closed under arbitrary products, that the class of l-ideals of existentially closed Abelian l-groups is a radical class closed under binary products, and that various classes of existentially closed Abelian l-groups are closed under bounded Boolean products.
引用
收藏
页码:257 / 300
页数:43
相关论文
共 50 条