Schatten classes of generalized Hilbert operators

被引:0
|
作者
José Ángel Peláez
Daniel Seco
机构
[1] Universidad de Málaga,Departamento de Análisis Matemático
[2] Universitat de Barcelona,Departament de Matemàtiques i Informàtica, Facultat de Matemàtiques i Informàtica
来源
Collectanea Mathematica | 2018年 / 69卷
关键词
Dirichlet type spaces; Schatten classes; Generalized Hilbert operators; Muckenhoupt weight; Doubling weights; Primary: 47B10; Secondary: 31C25; 47G10;
D O I
暂无
中图分类号
学科分类号
摘要
Let Dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_v$$\end{document} denote the Dirichlet type space in the unit disc induced by a radial weight v for which v^(r)=∫r1v(s)ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{v}(r)=\int _r^1 v(s)\,\text {d}s$$\end{document} satisfies the doubling property ∫r1v(s)ds≤C∫1+r21v(s)ds.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _r^1 v(s)\,\text {d}s\le C \int _{\frac{1+r}{2}}^1 v(s)\,\text {d}s.$$\end{document} In this paper, we characterize the Schatten classes Sp(Dv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_p(\mathcal {D}_v)$$\end{document} of the generalized Hilbert operators Hg(f)(z)=∫01f(t)g′(tz)dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {H}_g(f)(z)=\int _0^1f(t)g'(tz)\,\text {d}t \end{aligned}$$\end{document}acting on Dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_v$$\end{document}, where v satisfies certain Muckenhoupt type conditions. For p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}, it is proved that Hg∈Sp(Dv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_{g}\in S_p(\mathcal {D}_v)$$\end{document} if and only if ∫01(1-r)∫-ππ|g′(reiθ)|2dθp2dr1-r<∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _0^1 \left( (1-r)\int _{-\pi }^\pi |g'(r\text {e}^{i\theta })|^2\,\text {d}\theta \right) ^{\frac{p}{2}}\frac{{\text {d}}r}{1-r} <\infty . \end{aligned}$$\end{document}.
引用
收藏
页码:83 / 105
页数:22
相关论文
共 50 条
  • [1] Schatten classes of generalized Hilbert operators
    Angel Pelaez, Jose
    Seco, Daniel
    COLLECTANEA MATHEMATICA, 2018, 69 (01) : 83 - 105
  • [2] Schatten classes for Toeplitz operators with Hilbert space windows on modulation spaces
    Toft, Joachim
    Boggiatto, Paolo
    ADVANCES IN MATHEMATICS, 2008, 217 (01) : 305 - 333
  • [3] Schatten–Herz Classes of Toeplitz Operators on the Generalized Fock Space
    Xiaofen Lv
    Zhangjian Hu
    Complex Analysis and Operator Theory, 2017, 11 : 1269 - 1282
  • [4] FRAMES AND OPERATORS IN SCHATTEN CLASSES
    Hu Bingyang
    Khoi, Le Hai
    Kehe Zhu
    HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (04): : 1191 - 1219
  • [5] Schatten-Herz Classes of Toeplitz Operators on the Generalized Fock Space
    Lv, Xiaofen
    Hu, Zhangjian
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (06) : 1269 - 1282
  • [6] Schatten classes of Toeplitz operators on Bergman-Besov Hilbert spaces in the unit ball ✩
    Yang, Wenwan
    Liu, Junming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
  • [7] SCHATTEN CLASSES OF PSEUDODIFFERENTIAL-OPERATORS
    RONDEAUX, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (15): : 689 - 692
  • [8] SCHATTEN CLASSES OF PSEUDODIFFERENTIAL-OPERATORS
    RONDEAUX, C
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1984, 17 (01): : 67 - 81
  • [9] Differential equations in Schatten classes of operators
    Fernanda Botelho
    James E. Jamison
    Monatshefte für Mathematik, 2010, 160 : 257 - 269
  • [10] Differential equations in Schatten classes of operators
    Botelho, Fernanda
    Jamison, James E.
    MONATSHEFTE FUR MATHEMATIK, 2010, 160 (03): : 257 - 269