Flow field design and performance analysis of vanadium redox flow battery

被引:0
|
作者
Zebo Huang
Anle Mu
机构
[1] Xi’an University of Technology,School of Mechanical and Instrumental Engineering
来源
Ionics | 2021年 / 27卷
关键词
Vanadium redox flow battery; Flow field design; Battery performance; Flow optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Vanadium redox flow batteries (VRFBs) are one of the emerging energy storage techniques that have been developed with the purpose of effectively storing renewable energy. Due to the lower energy density, it limits its promotion and application. A flow channel is a significant factor determining the performance of VRFBs. Performance excellent flow field to ensure uniform distribution of electrolytes and increases the overall performance of the battery. In order to better explore the influence of the flow field on the transmission characteristics of the electrolyte, novel variable cross-section flow field is designed to analyze its impact on battery performance. The influence of flow field with and without flow field, different flow field configurations, and variable cross-section on battery performance was analyzed emphatically. The main contribution of this study are to make a comparative analysis of the existing channel design methods and analyze the advantages and disadvantages of different design methods and existing problems. It provides reference for the design and optimization of VRFBs in the future.
引用
收藏
页码:5207 / 5218
页数:11
相关论文
共 50 条
  • [1] Flow field design and performance analysis of vanadium redox flow battery
    Huang, Zebo
    Mu, Anle
    IONICS, 2021, 27 (12) : 5207 - 5218
  • [2] Attributes and performance analysis of all-vanadium redox flow battery based on a novel flow field design
    Huang, Zebo
    Yang, Chao
    Xie, Xing
    Yang, Bin
    Liu, Yangsheng
    Guo, Zhenwei
    IONICS, 2023, 29 (07) : 2793 - 2803
  • [3] Attributes and performance analysis of all-vanadium redox flow battery based on a novel flow field design
    Zebo Huang
    Chao Yang
    Xing Xie
    Bin Yang
    Yangsheng Liu
    Zhenwei Guo
    Ionics, 2023, 29 : 2793 - 2803
  • [4] Performance analysis of vanadium redox flow battery with interdigitated flow channel
    Yang, Tien-Fu
    Zheng, Le-Zheu
    Teng, Li-Tao
    Rashidi, Saman
    Yan, Wei-Mon
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 47
  • [5] Effect of flow field on the performance of an all-vanadium redox flow battery
    Kumar, S.
    Jayanti, S.
    JOURNAL OF POWER SOURCES, 2016, 307 : 782 - 787
  • [6] Effects of flow field designs on performance characteristics of vanadium redox flow battery
    Yang, Tien-Fu
    Chen, Yu-Kai
    Lin, Cong-You
    Yan, Wei-Mon
    Rashidi, Saman
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2025, 171
  • [7] Performance of a vanadium redox flow battery with tubular cell design
    Ressel, Simon
    Laube, Armin
    Fischer, Simon
    Chica, Antonio
    Flower, Thomas
    Struckmann, Thorsten
    JOURNAL OF POWER SOURCES, 2017, 355 : 199 - 205
  • [8] A New Detached Serpentine Flow Field Design for All Vanadium Redox Flow Battery
    Sun, Jie
    Zheng, Meng-Lian
    Yu, Zi-Tao
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2020, 41 (05): : 1166 - 1171
  • [9] Asymmetric structure design of a vanadium redox flow battery for improved battery performance
    Lu, Meng-Yue
    Yang, Wei-Wei
    Tang, Xin-Yuan
    Jiao, Yu-Hang
    Ye, Miao
    Xu, Qian
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [10] Numerical analysis of cycling performance of vanadium redox flow battery
    Jeong, Daein
    Jung, Seunghun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (07) : 5209 - 5222