Stretched exponential relaxation on the hypercube and the glass transition

被引:0
|
作者
R.M.C. de Almeida
N. Lemke
I.A. Campbell
机构
[1] Instituto de Física,
[2] Universidade Federal do Rio Grande do Sul,undefined
[3] Caixa Postal 15051,undefined
[4] 91501-970,undefined
[5] Porto Alegre,undefined
[6] RS,undefined
[7] Brazil,undefined
[8] Centro de Ciências Exatas e da Terra,undefined
[9] Unisinos Av. Unisinos,undefined
[10] 950 93022-000,undefined
[11] S ao Leopoldo,undefined
[12] RS,undefined
[13] Brazil,undefined
[14] Laboratoire des Verres,undefined
[15] Université de Montpellier II,undefined
[16] 34095 Montpellier Cedex 5,undefined
[17] France,undefined
[18] Laboratoire de Physique des Solides,undefined
[19] Université Paris Sud,undefined
[20] 91405 Orsay,undefined
[21] France,undefined
关键词
PACS. 61.43.-j Disordered solids - 61.43.Fs Glasses - 64.60.Ht Dynamic critical phenomena;
D O I
暂无
中图分类号
学科分类号
摘要
We study random walks on the dilute hypercube using an exact enumeration Master equation technique, which is much more efficient than Monte Carlo methods for this problem. For each dilution p the form of the relaxation of the memory function q(t) can be accurately parametrized by a stretched exponential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} over several orders of magnitude in q(t). As the critical dilution for percolation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is approached, the time constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} tends to diverge and the stretching exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} drops towards 1/3. As the same pattern of relaxation is observed in a wide class of glass formers, the fractal like morphology of the giant cluster in the dilute hypercube appears to be a good representation of the coarse grained phase space in these systems. For these glass formers the glass transition may be pictured as a percolation transition in phase space.
引用
收藏
页码:513 / 518
页数:5
相关论文
共 50 条
  • [1] Stretched exponential relaxation on the hypercube and the glass transition
    de Almeida, RMC
    Lemke, N
    Campbell, IA
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2000, 18 (03): : 513 - 518
  • [2] Stretched exponential relaxation in the Coulomb glass
    Díaz-Sánchez, A
    Pérez-Garrido, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2001, 24 (04): : 483 - 486
  • [3] Stretched exponential relaxation in the Coulomb glass
    A. Díaz-Sánchez
    A. Pérez-Garrido
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 24 : 483 - 486
  • [4] Monte Carlo simulation of stretched exponential relaxation near the glass transition
    Baschnagel, J
    Okun, K
    Wolfgardt, M
    Binder, K
    [J]. PHASE TRANSITIONS, 1998, 65 (1-4) : 263 - 278
  • [5] Topological origin of stretched exponential relaxation in glass
    Potuzak, Marcel
    Welch, Roger C.
    Mauro, John C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (21):
  • [6] RANDOM TRANSITION RATE MODEL OF STRETCHED EXPONENTIAL RELAXATION
    KOPONEN, I
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1995, 189 (1-2) : 154 - 160
  • [7] RELATION BETWEEN STRETCHED-EXPONENTIAL RELAXATION AND VOGEL-FULCHER BEHAVIOR ABOVE THE GLASS-TRANSITION
    NAGEL, SR
    DIXON, PK
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (07): : 3885 - 3886
  • [8] Stretched exponential relaxation and independent relaxation modes
    de Almeida, RMC
    Lemke, T
    Campbell, IA
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (04) : 701 - 707
  • [9] Fragility and temperature dependence of stretched exponential relaxation in glass-forming systems
    Wilkinson, Collin J.
    Doss, Karan
    Gulbiten, Ozgur
    Allan, Douglas C.
    Mauro, John C.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (09) : 4559 - 4567
  • [10] RELATION BETWEEN STRETCHED-EXPONENTIAL RELAXATION AND VOGEL-FULCHER BEHAVIOR ABOVE THE GLASS-TRANSITION - COMMENT
    NGAI, KL
    RENDELL, RW
    RAJAGOPAL, AK
    TEITLER, S
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (12): : 8002 - 8003