Episodic crustal growth in the Bundelkhand craton of central India shield: Constraints from petrogenesis of the tonalite–trondhjemite–granodiorite gneisses and K-rich granites of Bundelkhand tectonic zone

被引:0
|
作者
Hiredya Chauhan
Ashima Saikia
Talat Ahmad
机构
[1] University of Delhi,
来源
关键词
Tonalite–trondjemite–granodiorite gneiss; K-rich granites; Bundelkhand craton; subduction; continental crust; central Indian shield;
D O I
暂无
中图分类号
学科分类号
摘要
Tonalite–trondhjemite–granodiorite gneisses (TTG) and K-rich granites are extensively exposed in the Mesoarchean to Paleoproterozoic Bundelkhand craton of central India. The TTGs rocks are coarse- grained with biotite, plagioclase feldspar, K-feldspar and amphibole as major constituent phases. The major minerals constituting the K-rich granites are K-feldspar, plagioclase feldspar and biotite. They are also medium to coarse grained. Mineral chemical studies show that the amphiboles of TTG are calcic amphibole hastingsite, plagioclase feldspars are mostly of oligoclase composition, K-feldspars are near pure end members and biotites are solid solutions between annite and siderophyllite components. The K-rich granites have biotites of siderophyllite–annite composition similar to those of TTGs, plagioclase feldspars are oligoclase in composition, potassic feldspars have XK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {X}_{\mathrm{K}}$$\end{document} ranging from 0.97 to 0.99 and are devoid of any amphibole. The tonalite–trondhjemite–granodiorite gneiss samples have high SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SiO}_{2}$$\end{document} (64.17–74.52 wt%), Na2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Na}_{2}\hbox {O}$$\end{document} (3.11–5.90 wt%), low Mg# (30–47) and HREE contents, with moderate (La/Yb)CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hbox {La/Yb})_{\mathrm{CN}}$$\end{document} values (14.7–33.50) and Sr/Y ratios (4.85–98.7). These geochemical characteristics suggest formation of the TTG by partial melting of the hydrous basaltic crust at pressures and depths where garnet and amphibole were stable phases in the Paleo-Mesoarchean. The K-rich granite samples show high SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SiO}_{2}$$\end{document} (64.72–76.73 wt%), K2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {K}_{2}\hbox {O}$$\end{document} (4.31–5.42), low Na2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Na}_{2}\hbox {O}$$\end{document} (2.75–3.31 wt%), Mg# (24–40) and HREE contents, with moderate to high (La/Yb)CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hbox {La/Yb})_{\mathrm{CN}}$$\end{document} values (9.26–29.75) and Sr/Y ratios (1.52–24). They differ from their TTG in having elevated concentrations of incompatible elements like K, Zr, Th, and REE. These geochemical features indicate formation of the K-granites by anhydrous partial melting of the Paleo-Mesoarchean TTG or mafic crustal materials in an extensional regime. Combined with previous studies it is interpreted that two stages of continental accretion (at 3.59–3.33 and 3.2–3.0 Ga) and reworking (at 2.5–1.9 Ga) occurred in the Bundelkhand craton from Archaean to Paleoproterozoic.
引用
收藏
相关论文
共 15 条
  • [1] Episodic crustal growth in the Bundelkhand craton of central India shield: Constraints from petrogenesis of the tonalite-trondhjemite-granodiorite gneisses and K-rich granites of Bundelkhand tectonic zone
    Chauhan, Hiredya
    Saikia, Ashima
    Ahmad, Talat
    JOURNAL OF EARTH SYSTEM SCIENCE, 2018, 127 (03)
  • [2] Geochronology and petrogenesis of the TTG gneisses and granitoids from the Central Bundelkhand granite-greenstone terrane, Bundelkhand Craton, India: Implications for Archean crustal evolution and cratonization
    Singh, Pradip K.
    Verma, Sanjeet K.
    Singh, Vinod K.
    Moreno, Juan A.
    Oliveira, Elson P.
    Li, Xian-Hua
    Malviya, Vivek P.
    Prakash, Divya
    PRECAMBRIAN RESEARCH, 2021, 359
  • [3] Chromian spinel compositions from Madawara ultramafics, Bundelkhand Craton: Implications on petrogenesis and tectonic evolution of the southern part of Bundelkhand Craton, Central India
    Mohanty, Niranjan
    Singh, Surya Pratap
    Satyanarayanan, Manavalan
    Jayananda, Mudlappa
    Korakoppa, Madiwalappa Mallappa
    Hiloidari, Sikha
    GEOLOGICAL JOURNAL, 2019, 54 (04) : 2099 - 2123
  • [4] TTG suite from the Bundelkhand Craton, Central India: Geochemistry, petrogenesis and implications for Archean crustal evolution
    Mohan, M. Ram
    Singh, S. P.
    Santosh, M.
    Siddiqui, M. A.
    Balaram, V.
    JOURNAL OF ASIAN EARTH SCIENCES, 2012, 58 : 38 - 50
  • [5] Geochemistry and petrogenesis of magnesian high-K granitoids from Bundelkhand Craton, Central India: New insights into crustal evolution
    Prajapati, Shailendra K.
    Alam, Meraj
    Mishra, Parashar
    Kumar, Hemant
    ACTA GEOCHIMICA, 2024, : 36 - 58
  • [6] Geochemistry and petrogenesis of magnesian high-K granitoids from Bundelkhand Craton,Central India:New insights into crustal evolution
    Shailendra KPrajapati
    Meraj Alam
    Parashar Mishra
    Hemant Kumar
    Acta Geochimica, 2025, 44 (01) : 36 - 58
  • [7] Geochemistry and petrogenesis of sanukitoids and high-K anatectic granites from the Bundelkhand Craton, India: Implications for late-Archean crustal evolution
    Singh, Pradip K.
    Verma, Sanjeet K.
    Singh, Vinod K.
    Moreno, Juan A.
    Oliveira, Elson P.
    Mehta, Pankaj
    JOURNAL OF ASIAN EARTH SCIENCES, 2019, 174 : 263 - 282
  • [8] Neodymium Isotope Constraints on the Origin of TTGs and High-K Granitoids in the Bundelkhand Craton, Central India: Implications for Archaean Crustal Evolution
    Joshi, Kumar Batuk
    Singh, Sunil Kumar
    Halla, Jaana
    Ahmad, Talat
    Rai, Vinai K.
    LITHOSPHERE, 2022, 2022 (SpecialIssue8)
  • [9] Episodic crustal growth and reworking at the southeastern margin of the North China Craton: evidence from zircon U–Pb and Lu–Hf isotopes of Archean tonalite–trondhjemite–granodiorite gneisses in the Bengbu-Wuhe area
    Jianjun Wan
    Andong Wang
    Jiayong Pan
    Chengdong Liu
    Yan Zhao
    Zhengbing Zhou
    Xiandong Luo
    Acta Geochimica, 2021, 40 (03) : 366 - 389
  • [10] Episodic crustal growth and reworking at the southeastern margin of the North China Craton: evidence from zircon U–Pb and Lu–Hf isotopes of Archean tonalite–trondhjemite–granodiorite gneisses in the Bengbu-Wuhe area
    Jianjun Wan
    Andong Wang
    Jiayong Pan
    Chengdong Liu
    Yan Zhao
    Zhengbing Zhou
    Xiandong Luo
    Acta Geochimica, 2021, 40 : 366 - 389