Given an abelian group G of order n, and a finite non-empty subset A of integers, the Davenport constant of G with weightA, denoted by DA(G), is defined to be the least positive integer t such that, for every sequence (x1,..., xt) with xi ∈ G, there exists a non-empty subsequence \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(x_{j_1},\ldots, x_{j_l})$\end{document} and ai ∈ A such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\sum_{i=1}^{l}a_ix_{j_i} = 0$\end{document}. Similarly, for an abelian group G of order n, EA(G) is defined to be the least positive integer t such that every sequence over G of length t contains a subsequence \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(x_{j_1} ,\ldots, x_{j_n})$\end{document} such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\sum_{i=1}^{n}a_ix_{j_i} = 0$\end{document}, for some ai ∈ A. When G is of order n, one considers A to be a non-empty subset of {1,..., n − 1 }. If G is the cyclic group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\Bbb Z}/n{\Bbb Z}$\end{document}, we denote EA(G) and DA(G) by EA(n) and DA(n) respectively.