Generalizations of some zero sum theorems

被引:0
|
作者
M N CHINTAMANI
B K MORIYA
机构
[1] Harish-Chandra Research Institute,
来源
关键词
Weighted zero sum problems; Davenport constant; EGZ theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Given an abelian group G of order n, and a finite non-empty subset A of integers, the Davenport constant of G with weightA, denoted by DA(G), is defined to be the least positive integer t such that, for every sequence (x1,..., xt) with xi ∈ G, there exists a non-empty subsequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x_{j_1},\ldots, x_{j_l})$\end{document} and ai ∈ A such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i=1}^{l}a_ix_{j_i} = 0$\end{document}. Similarly, for an abelian group G of order n, EA(G) is defined to be the least positive integer t such that every sequence over G of length t contains a subsequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x_{j_1} ,\ldots, x_{j_n})$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i=1}^{n}a_ix_{j_i} = 0$\end{document}, for some ai ∈ A. When G is of order n, one considers A to be a non-empty subset of {1,..., n − 1 }. If G is the cyclic group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb Z}/n{\Bbb Z}$\end{document}, we denote EA(G) and DA(G) by EA(n) and DA(n) respectively.
引用
收藏
页码:15 / 21
页数:6
相关论文
共 50 条
  • [1] Generalizations of some zero sum theorems
    Chintamani, M. N.
    Moriya, B. K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (01): : 15 - 21
  • [2] Remarks on some zero-sum theorems
    Adhikari, S. D.
    Gun, Sanoli
    Rath, Purusottam
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (03): : 275 - 281
  • [3] Remarks on some zero-sum theorems
    S. D. Adhikari
    Sanoli Gun
    Purusottam Rath
    Proceedings - Mathematical Sciences, 2009, 119 : 275 - 281
  • [4] Generalization of some weighted zero-sum theorems
    Sarkar, Subha
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02):
  • [5] Generalization of some weighted zero-sum theorems
    Subha Sarkar
    Proceedings - Mathematical Sciences, 2021, 131
  • [6] GENERALIZATIONS OF SOME THEOREMS OF RAMANUJAN
    RAMANATHAN, KG
    JOURNAL OF NUMBER THEORY, 1988, 29 (02) : 118 - 137
  • [7] SOME GENERALIZATIONS OF MEIERS THEOREMS
    YOSHIDA, H
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (02) : 609 - 622
  • [8] SOME GENERALIZATIONS OF RAMANUJANS SUM
    RAMANATHAN, KG
    SUBBARAO, MV
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (05): : 1250 - 1260
  • [9] ON SOME GENERALIZATIONS OF THEOREMS BY LANDAU AND POLYA
    GROSSWALD, E
    ISRAEL JOURNAL OF MATHEMATICS, 1965, 3 (04) : 211 - +
  • [10] Some generalizations of theorems on vertex coloring
    Berlov, S. L.
    Dol'nikov, V. L.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1582 - 1585