Sparse online principal component analysis for parameter estimation in factor model

被引:0
|
作者
Guangbao Guo
Chunjie Wei
Guoqi Qian
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] University of Melbourne,School of Mathematics and Statistics
来源
Computational Statistics | 2023年 / 38卷
关键词
Factor model; Parament estimation; Principal component method; Sparse; Online learning;
D O I
暂无
中图分类号
学科分类号
摘要
Factor model has the capacity of reducing redundant information in real data analysis. Note that sparse principal component (SPC) method is developed to obtain sparse solutions from the model, online principal component (OPC) method is used to handle with online dimension reduction problem. It is worth considering how to obtain a sparse solution with online learning. In this paper we propose a novel sparse online principal component (SOPC) method for sparse parameter estimation in factor model, where we combine the advantages of the SPC and OPC methods in estimating the loading matrix and the idiosyncratic variance matrix. By integrating sparse modelling with online update, the SOPC is capable of finding the sparse solution through iterative online updating, leading to a consistent and easily interpretable solution. Stability and sensitivity of the SOPC are assessed through a simulation study. The method is then applied to analyze two real data sets concerning drug efficacy and human activity recognition.
引用
收藏
页码:1095 / 1116
页数:21
相关论文
共 50 条
  • [1] Sparse online principal component analysis for parameter estimation in factor model
    Guo, Guangbao
    Wei, Chunjie
    Qian, Guoqi
    COMPUTATIONAL STATISTICS, 2023, 38 (02) : 1095 - 1116
  • [2] Parameter Estimation in Factor Analysis: Maximum Likelihood versus Principal Component
    Kassim, Suraiya
    Hasan, Husna
    Ismon, Aisyah Mohd
    Asri, Fahimah Muhammad
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 1293 - 1299
  • [3] Principal component estimation of parameter of nonlinear model and its applications
    Zhou, Haiyin
    Wang, Zhengming
    Dandao Xuebao/Journal of Ballistics, 1999, 11 (02): : 9 - 15
  • [4] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [5] Image noise estimation method based on sparse principal component analysis
    Yang Hua
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2019, 34 (09) : 913 - 920
  • [6] Gradient-based sparse principal component analysis with extensions to online learning
    Qiu, Yixuan
    Lei, Jing
    Roeder, Kathryn
    BIOMETRIKA, 2023, 110 (02) : 339 - 360
  • [7] Online fault monitoring and diagnosis using recursive sparse principal component analysis
    Liu J.-P.
    Wang J.
    Liu X.-F.
    Tang Z.-H.
    Ma T.-Y.
    Xiao W.-H.
    Kongzhi yu Juece/Control and Decision, 2020, 35 (08): : 2006 - 2012
  • [8] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [9] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [10] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214