Shape Perturbation of Grushin Eigenvalues

被引:0
|
作者
Pier Domenico Lamberti
Paolo Luzzini
Paolo Musolino
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica “Tullio Levi Civita”
[2] Università Ca’ Foscari Venezia,Dipartimento di Scienze Molecolari e Nanosistemi
来源
关键词
Grushin operator; Eigenvalues; Domain perturbation; Shape sensitivity analysis; Real analyticity; Hadamard formula; Rellich–Pohozaev identity; 35J70; 35B20; 35P05; 47A10; 49K40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the spectral problem for the Grushin Laplacian subject to homogeneous Dirichlet boundary conditions on a bounded open subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}. We prove that the symmetric functions of the eigenvalues depend real analytically upon domain perturbations and we prove an Hadamard-type formula for their shape differential. In the case of perturbations depending on a single scalar parameter, we prove a Rellich–Nagy-type theorem which describes the bifurcation phenomenon of multiple eigenvalues. As corollaries, we characterize the critical shapes under isovolumetric and isoperimetric perturbations in terms of overdetermined problems and we deduce a new proof of the Rellich–Pohozaev identity for the Grushin eigenvalues.
引用
收藏
页码:10679 / 10717
页数:38
相关论文
共 50 条
  • [1] Shape Perturbation of Grushin Eigenvalues
    Lamberti, Pier Domenico
    Luzzini, Paolo
    Musolino, Paolo
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (11) : 10679 - 10717
  • [2] STOCHASTIC PERTURBATION AND CONNECTIVITY BASED ON GRUSHIN DISTRIBUTION
    Turcanu, Teodor
    Udriste, Constantin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (01): : 3 - 10
  • [3] SINGULAR PERTURBATION OF EIGENVALUES
    GREENLEE, WM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1969, 34 (02) : 143 - &
  • [4] PERTURBATION OF EMBEDDED EIGENVALUES
    HOWLAND, JS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (02) : 280 - &
  • [5] On perturbation of embedded eigenvalues
    Agmon, S
    PARTIAL DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 1996, 21 : 1 - 14
  • [6] Acoustic eigenvalues of a quasispherical resonator: Second order shape perturbation theory for arbitrary modes
    Mehl, James B.
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2007, 112 (03): : 163 - 173
  • [7] Perturbation theory for plasmonic eigenvalues
    Grieser, Daniel
    Uecker, Hannes
    Biehs, Svend-Age
    Huth, Oliver
    Rueting, Felix
    Holthaus, Martin
    PHYSICAL REVIEW B, 2009, 80 (24):
  • [9] Global Perturbation of Nonlinear Eigenvalues
    Lopez-Gomez, Julian
    Carlos Sampedro, Juan
    ADVANCED NONLINEAR STUDIES, 2021, 21 (02) : 229 - 249
  • [10] The absolute perturbation of the eigenvalues of matrices
    Ren Yanping
    Yang Jin
    Zhang Jinfang
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 119 - 122