Sharp Li–Yau-Type Gradient Estimates on Hyperbolic Spaces

被引:0
|
作者
Chengjie Yu
Feifei Zhao
机构
[1] Shantou University,Department of Mathematics
来源
关键词
Heat equation; Li–Yau-type gradient estimate; Heat kernel; Primary 35K05; Secondary 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, motivated by the works of Bakry et al. in finding sharp Li–Yau-type gradient estimates for positive solutions of the heat equation on complete Riemannian manifolds with nonzero Ricci curvature lower bound, we first introduce a general form of Li–Yau-type gradient estimate and show that the validity of such an estimate for any positive solutions of the heat equation reduces to the validity of the estimate for the heat kernel of the Riemannian manifold. Then, a sharp Li–Yau-type gradient estimate on the three-dimensional hyperbolic space is obtained by using the explicit expression of the heat kernel, and some optimal Li–Yau-type gradient estimates on general hyperbolic spaces are obtained.
引用
收藏
页码:54 / 68
页数:14
相关论文
共 50 条
  • [1] Sharp Li-Yau-Type Gradient Estimates on Hyperbolic Spaces
    Yu, Chengjie
    Zhao, Feifei
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 54 - 68
  • [2] Li-Yau Multiplier Set and Optimal Li-Yau Gradient Estimate on Hyperbolic Spaces
    Yu, Chengjie
    Zhao, Feifei
    POTENTIAL ANALYSIS, 2022, 56 (02) : 191 - 211
  • [3] Li-Yau Multiplier Set and Optimal Li-Yau Gradient Estimate on Hyperbolic Spaces
    Chengjie Yu
    Feifei Zhao
    Potential Analysis, 2022, 56 : 191 - 211
  • [4] YAU'S GRADIENT ESTIMATES ON ALEXANDROV SPACES
    Zhang, Hui-Chun
    Zhu, Xi-Ping
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 91 (03) : 445 - 522
  • [5] Li-Yau type gradient estimates and Harnack inequalities by stochastic analysis
    Arnaudon, Marc
    Thalmaier, Anton
    PROBABILISTIC APPROACH TO GEOMETRY, 2010, 57 : 29 - +
  • [6] GRADIENT ESTIMATES OF LI YAU TYPE FOR A GENERAL HEAT EQUATION ON RIEMANNIAN MANIFOLDS
    Nguyen Ngoc Khanh
    ARCHIVUM MATHEMATICUM, 2016, 52 (04): : 207 - 219
  • [7] Sharp spectral gap and Li–Yau’s estimate on Alexandrov spaces
    Zhongmin Qian
    Hui-Chun Zhang
    Xi-Ping Zhu
    Mathematische Zeitschrift, 2013, 273 : 1175 - 1195
  • [8] Yau-type ternary Hom-Lie bialgebras
    Abdaoui, Elkadri
    Mabrouk, Sami
    Makhlouf, Abdenacer
    Massoud, Sonia
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (03) : 1209 - 1240
  • [9] A Note on Li-Yau-Type Gradient Estimate
    Chengjie Yu
    Feifei Zhao
    Acta Mathematica Scientia, 2019, 39 : 1185 - 1194
  • [10] A NOTE ON LI-YAU-TYPE GRADIENT ESTIMATE
    Yu, Chengjie
    Zhao, Feifei
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (04) : 1185 - 1194