Fast matrix multiplication is stable

被引:0
|
作者
James Demmel
Ioana Dumitriu
Olga Holtz
Robert Kleinberg
机构
[1] University of California,Mathematics Department
[2] University of California,Computer Science Division
来源
Numerische Mathematik | 2007年 / 106卷
关键词
Abelian Group; Matrix Multiplication; Discrete Fourier Transform; Inverse Fourier Transform; Wreath Product;
D O I
暂无
中图分类号
学科分类号
摘要
We perform forward error analysis for a large class of recursive matrix multiplication algorithms in the spirit of Bini and Lotti [Numer. Math. 36:63–72, 1980]. As a consequence of our analysis, we show that the exponent of matrix multiplication (the optimal running time) can be achieved by numerically stable algorithms. We also show that new group-theoretic algorithms proposed in Cohn and Umans [Foundations of Computer Science, 44th Annual IEEE Symposium, pp. 438–449, 2003] and Cohn et al. [Foundations of Computer Science, 46th Annual IEEE Symposium, pp. 379–388, 2005] are all included in the class of algorithms to which our analysis applies, and are therefore numerically stable. We perform detailed error analysis for three specific fast group-theoretic algorithms.
引用
收藏
页码:199 / 224
页数:25
相关论文
共 50 条
  • [1] Fast matrix multiplication is stable
    Demmel, James
    Dumitriu, Ioana
    Holtz, Olga
    Kleinberg, Robert
    NUMERISCHE MATHEMATIK, 2007, 106 (02) : 199 - 224
  • [2] Alternative Basis Matrix Multiplication is Fast and Stable
    Schwartz, Oded
    Toledo, Sivan
    Vaknin, Noa
    Wiernik, Gal
    PROCEEDINGS 2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS 2024, 2024, : 38 - 51
  • [3] FAST MATRIX MULTIPLICATION
    BUNGE, CF
    CISNEROS, G
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1987, 8 (07) : 960 - 964
  • [4] Fast Sparse Matrix Multiplication
    Yuster, Raphael
    Zwick, Uri
    ACM TRANSACTIONS ON ALGORITHMS, 2005, 1 (01) : 2 - 13
  • [5] Fast sparse matrix multiplication
    Yuster, R
    Zwick, U
    ALGORITHMS ESA 2004, PROCEEDINGS, 2004, 3221 : 604 - 615
  • [6] Fast interval matrix multiplication
    Rump, Siegfried M.
    NUMERICAL ALGORITHMS, 2012, 61 (01) : 1 - 34
  • [7] Fast interval matrix multiplication
    Siegfried M. Rump
    Numerical Algorithms, 2012, 61 : 1 - 34
  • [8] Plethysm and fast matrix multiplication
    Seynnaeve, Tim
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (01) : 52 - 55
  • [9] Local Search for Fast Matrix Multiplication
    Heule, Marijn J. H.
    Kauers, Manuel
    Seidl, Martina
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2019, 2019, 11628 : 155 - 163
  • [10] FAST HYBRID MATRIX MULTIPLICATION ALGORITHMS
    Jelfimova, L. D.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2010, 46 (04) : 563 - 573