On the asymptotics of Kronecker coefficients

被引:0
|
作者
Laurent Manivel
机构
[1] Technopôle Château-Gombert,Institut de Mathématiques de Marseille
来源
关键词
Symmetric group; Kronecker coefficient; Stability; Schur–Weyl duality; Borel–Weil theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Kronecker coefficients encode the tensor products of complex irreducible representations of symmetric groups. Their stability properties have been considered recently by several authors (Vallejo, Pak and Panova, Stembridge). We describe a geometric method, based on Schur–Weyl duality, that allows to produce huge series of instances of this phenomenon. Moreover, the method gives access to lots of extra information. Most notably, we can often compute the stable Kronecker coefficients, sometimes as numbers of points in very explicit polytopes. We can also describe explicitly the moment polytope in the neighbourhood of our stable triples. Finally, we explain an observation of Stembridge on the behaviour of certain rectangular Kronecker coefficients, by relating it to the affine Dynkin diagram of type E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6$$\end{document}.
引用
收藏
页码:999 / 1025
页数:26
相关论文
共 50 条
  • [1] On the asymptotics of Kronecker coefficients
    Manivel, Laurent
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 999 - 1025
  • [2] All Kronecker coefficients are reduced Kronecker coefficients
    Ikenmeyer, Christian
    Panova, Greta
    FORUM OF MATHEMATICS PI, 2024, 12
  • [3] On vanishing of Kronecker coefficients
    Ikenmeyer, Christian
    Mulmuley, Ketan D.
    Walter, Michael
    COMPUTATIONAL COMPLEXITY, 2017, 26 (04) : 949 - 992
  • [4] On rectangular Kronecker coefficients
    Manivel, Laurent
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 33 (01) : 153 - 162
  • [5] On rectangular Kronecker coefficients
    Laurent Manivel
    Journal of Algebraic Combinatorics, 2011, 33 : 153 - 162
  • [6] On vanishing of Kronecker coefficients
    Christian Ikenmeyer
    Ketan D. Mulmuley
    Michael Walter
    computational complexity, 2017, 26 : 949 - 992
  • [7] Computation of dilated Kronecker coefficients
    Baldoni, V.
    Vergne, M.
    Walter, M.
    JOURNAL OF SYMBOLIC COMPUTATION, 2018, 84 : 113 - 146
  • [8] ON THE COMPLEXITY OF COMPUTING KRONECKER COEFFICIENTS
    Pak, Igor
    Panova, Greta
    COMPUTATIONAL COMPLEXITY, 2017, 26 (01) : 1 - 36
  • [9] On the complexity of computing Kronecker coefficients
    Igor Pak
    Greta Panova
    computational complexity, 2017, 26 : 1 - 36
  • [10] A NOTE ON CERTAIN KRONECKER COEFFICIENTS
    Manivel, L.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (01) : 1 - 7