Shift-invariant system on the Heisenberg Group

被引:0
|
作者
S. R. Das
R. Radha
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Madras,undefined
来源
关键词
Dual Gramian; Frames; Gramian; Range function; Riesz basis; Shift-invariant space; 42C15; 43A30; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a shift-invariant system of the form {Laνgs:ν∈Γ,s∈Z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{L_{a\nu }g_s:\nu \in \varGamma ,s\in {{\mathbb {Z}}}\}$$\end{document} for a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document} is studied on the Heisenberg group Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {H}}^n}$$\end{document}, where Lx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_x$$\end{document} denotes the left translation operator on Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {H}}^n}$$\end{document} and Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} is a lattice in Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {H}}^n}$$\end{document}. The characterizations for the shift-invariant system to be a Bessel sequence and a frame sequence are given in terms of certain operators arising from the fiber map corresponding to this system. For a shift invariant system to be a frame sequence (Riesz sequence) the characterization is given in terms of dual Gramian (Gramian). Moreover, the problem of characterizing a pair of shift-invariant systems to be dual frames is also discussed.
引用
收藏
相关论文
共 50 条
  • [1] Shift-invariant system on the Heisenberg Group
    Das, S. R.
    Radha, R.
    [J]. ADVANCES IN OPERATOR THEORY, 2021, 6 (01)
  • [2] SHIFT-INVARIANT SPACES WITH COUNTABLY MANY MUTUALLY ORTHOGONAL GENERATORS ON THE HEISENBERG GROUP
    Radha, R.
    Adhikari, Saswata
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (02): : 435 - 463
  • [3] The conditions of frame for the shift-invariant system
    Yang, Dewu
    Zhu, Xiuge
    [J]. 2011 International Conference on Advanced Mechatronic Systems, ICAMechS 2011 - Final Program, 2011, : 255 - 259
  • [4] ON SHIFT-INVARIANT OPERATORS
    SHTEINBERG, AM
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1984, 39 (03) : 215 - 216
  • [5] System bandwidth and the existence of generalized shift-invariant frames
    Fuehr, Hartmut
    Lemvig, Jakob
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (02) : 563 - 601
  • [6] Boosting Shift-Invariant Features
    Hoernlein, Thomas
    Jaehne, Bernd
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2009, 5748 : 121 - 130
  • [7] On learning with shift-invariant structures
    Rusu, Cristian
    [J]. DIGITAL SIGNAL PROCESSING, 2020, 99
  • [8] Generalized Shift-Invariant Systems
    Amos Ron
    Zuowei Shen
    [J]. Constructive Approximation , 2005, 22 : 1 - 45
  • [9] Shift-invariant algebras on groups
    Grigoryan, SA
    Tonev, TV
    [J]. BANACH ALGEBRAS AND THEIR APPLICATIONS, 2004, 363 : 111 - 127
  • [10] Invariance of shift-invariant spaces
    ZHANG QingYue & SUN WenChang Department of Mathematics and LPMC
    [J]. Science China Mathematics, 2012, 55 (07) : 1395 - 1401