Complex Dynamics in a ODE Model Related to Phase Transition

被引:0
|
作者
Duccio Papini
Fabio Zanolin
机构
[1] Università di Udine,Dipartimento di Matematica e Informatica
来源
Journal of Dynamics and Differential Equations | 2017年 / 29卷
关键词
Periodic solutions; Non-autonomous equations; Allen–Cahn equation; Complex dynamics; 34C25; 34C28; 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by some recent studies on the Allen–Cahn phase transition model with a periodic nonautonomous term, we prove the existence of complex dynamics for the second order equation -x¨+1+ε-1A(t)G′(x)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\ddot{x} + \left( 1 + \varepsilon ^{-1} A(t)\right) G'(x) = 0, \end{aligned}$$\end{document}where A(t) is a nonnegative T-periodic function and ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 0$$\end{document} is sufficiently small. More precisely, we find a full symbolic dynamics made by solutions which oscillate between any two different strict local minima x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document} and x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1$$\end{document} of G(x). Such solutions stay close to x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document} or x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1$$\end{document} in some fixed intervals, according to any prescribed coin tossing sequence. For convenience in the exposition we consider (without loss of generality) the case x0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 =0$$\end{document} and x1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1 = 1$$\end{document}.
引用
收藏
页码:1215 / 1232
页数:17
相关论文
共 50 条
  • [1] Complex Dynamics in a ODE Model Related to Phase Transition
    Papini, Duccio
    Zanolin, Fabio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (03) : 1215 - 1232
  • [2] Phase Transition Dynamics in a Complex Oxide Heterostructure
    Zhang, Qingteng
    Hu, Guoxiang
    Starchenko, Vitalii
    Wan, Gang
    Dufresne, Eric M.
    Dong, Yongqi
    Liu, Huajun
    Zhou, Hua
    Jeen, Hyoungjeen
    Saritas, Kayahan
    Krogel, Jaron T.
    Reboredo, Fernando A.
    Lee, Ho Nyung
    Sandy, Alec R.
    Almazan, Irene Calvo
    Ganesh, Panchapakesan
    Fong, Dillon D.
    PHYSICAL REVIEW LETTERS, 2022, 129 (23)
  • [3] Model A dynamics and the deconfining phase transition
    Berg, BA
    Meyer-Ortmanns, H
    Velytsky, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 140 : 571 - 573
  • [4] Hamiltonian dynamics and the phase transition of the XY model
    Leoncini, X
    Verga, AD
    Ruffo, S
    PHYSICAL REVIEW E, 1998, 57 (06): : 6377 - 6389
  • [5] Electroweak phase transition in an inert complex triplet model
    Kazemi, M. J.
    AbdusSalam, S. S.
    PHYSICAL REVIEW D, 2021, 103 (07)
  • [6] DYNAMICS OF A SIMPLE MODEL FOR A STRUCTURAL PHASE-TRANSITION
    SASVARI, L
    SZEPFALUSY, P
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1974, 7 (06): : 1061 - 1068
  • [7] DYNAMICS IN A KINETIC MODEL OF ORIENTED PARTICLES WITH PHASE TRANSITION
    Frouvelle, Amic
    Liu, Jian-Guo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 791 - 826
  • [8] Dynamics Reflects Quantum Phase Transition of Rabi Model
    Li, Ming
    Wang, Yinuo
    Song, Zhaoyang
    Zhao, Yiming
    Zhao, Xiaolong
    Ma, Hongyang
    PHOTONICS, 2023, 10 (11)
  • [9] Phase transition dynamics in the hot Abelian Higgs model
    Hindmarsh, M
    Rajantie, A
    PHYSICAL REVIEW D, 2001, 64 (06)
  • [10] Quantum Phase Transition and Universal Dynamics in the Rabi Model
    Hwang, Myung-Joong
    Puebla, Ricardo
    Plenio, Martin B.
    PHYSICAL REVIEW LETTERS, 2015, 115 (18)